14,227 research outputs found

    Studies of unsteady viscous flows using a two-equation model of turbulence

    Get PDF
    A two equation model of turbulence, based on the turbulent kinetic energy and energy dissipation, suitable for prediction of unsteady viscous flows, was developed. Also, the performance of the two equation model was compared with simpler algebraic models such as the Baldwin-Lomax two layer eddy viscosity model, and a model by Johnson and King which accounts for upstream history of the turbulent kinetic energy. A brief discussion of this study is given

    Trapped Resonant Fermions above Superfluid Transition Temperature

    Full text link
    We investigate trapped resonant fermions with unequal populations within the local density approximation above the superfluid transition temperature. By tuning the attractive interaction between fermions via Feshbach resonance, the system evolves from weakly interacting fermi gas to strongly interacting fermi gas, and finally becomes bose-fermi mixture. The density profiles of fermions are examined and compared with experiments. We also point out the simple relationships between the local density, the axial density, and the gas pressure within the local density approximation.Comment: 9 pages, 4 figure

    Evaluation of three turbulence models for the prediction of steady and unsteady airloads

    Get PDF
    Two dimensional quasi-three dimensional Navier-Stokes solvers were used to predict the static and dynamic airload characteristics of airfoils. The following three turbulence models were used: the Baldwin-Lomax algebraic model, the Johnson-King ODE model for maximum turbulent shear stress, and a two equation k-e model with law-of-the-wall boundary conditions. It was found that in attached flow the three models have good agreement with experimental data. In unsteady separated flows, these models give only a fair correlation with experimental data

    Analysis of viscous transonic flow over airfoil sections

    Get PDF
    A full Navier-Stokes solver has been used to model transonic flow over three airfoil sections. The method uses a two-dimensional, implicit, conservative finite difference scheme for solving the compressible Navier-Stokes equations. Results are presented as prescribed for the Viscous Transonic Airfoil Workshop to be held at the AIAA 25th Aerospace Sciences Meeting. The NACA 0012, RAE 2822 and Jones airfoils have been investigated for both attached and separated transonic flows. Predictions for pressure distributions, loads, skin friction coefficients, boundary layer displacement thickness and velocity profiles are included and compared with experimental data when possible. Overall, the results are in good agreement with experimental data

    Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels

    Get PDF
    Enzyme-mediated in situ forming hydrogels are attractive for many biomedical applications because gelation afforded by enzymatic reactions can be readily controlled not only by tuning macromer compositions, but also by adjusting enzyme kinetics. For example, horseradish peroxidase (HRP) has been used extensively for in situ cross-linking of macromers containing hydroxyl-phenol groups. The use of HRP to initiate thiol-allylether polymerization has also been reported, yet no prior study has demonstrated enzymatic initiation of thiol-norbornene gelation. In this study, we discovered that HRP can generate the thiyl radicals needed for initiating thiol-norbornene hydrogelation, which has only been demonstrated previously using photopolymerization. Enzymatic thiol-norbornene gelation not only overcomes light attenuation issue commonly observed in photopolymerized hydrogels, but also preserves modularity of the cross-linking. In particular, we prepared modular hydrogels from two sets of norbornene-modified macromers, 8-arm poly(ethylene glycol)-norbornene (PEG8NB) and gelatin-norbornene (GelNB). Bis-cysteine-containing peptides or PEG-tetra-thiol (PEG4SH) was used as a cross-linker for forming enzymatically and orthogonally polymerized hydrogel. For HRP-initiated PEG-peptide hydrogel cross-linking, gelation efficiency was significantly improved via adding tyrosine residues on the peptide cross-linkers. Interestingly, these additional tyrosine residues did not form permanent dityrosine cross-links following HRP-induced gelation. As a result, they remained available for tyrosinase-mediated secondary cross-linking, which dynamically increased hydrogel stiffness. In addition to material characterizations, we also found that both PEG- and gelatin-based hydrogels exhibited excellent cytocompatibility for dynamic 3D cell culture. The enzymatic thiol-norbornene gelation scheme presented here offers a new cross-linking mechanism for preparing modularly and dynamically cross-linked hydrogels

    "Teleparallel" Dark Energy

    Get PDF
    Using the "teleparallel" equivalent of General Relativity as the gravitational sector, which is based on torsion instead of curvature, we add a canonical scalar field, allowing for a nonminimal coupling with gravity. Although the minimal case is completely equivalent to standard quintessence, the nonminimal scenario has a richer structure, exhibiting quintessence-like or phantom-like behavior, or experiencing the phantom-divide crossing. The richer structure is manifested in the absence of a conformal transformation to an equivalent minimally-coupled model.Comment: 5 pages, 1 figure, Version published in PLB704 (2011) 384-38
    • …
    corecore