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Using the “teleparallel” equivalent of General Relativity as the gravitational sector, which is based on
torsion instead of curvature, we add a canonical scalar field, allowing for a nonminimal coupling with
gravity. Although the minimal case is completely equivalent to standard quintessence, the nonminimal
scenario has a richer structure, exhibiting quintessence-like or phantom-like behavior, or experiencing the
phantom-divide crossing. The richer structure is manifested in the absence of a conformal transformation
to an equivalent minimally-coupled model.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

The “teleparallel” equivalent of General Relativity (TEGR) [1,2]
is an equivalent formulation of classical gravity, in which instead
of using the torsionless Levi–Civita connection one uses the cur-
vatureless Weitzenböck one. The dynamical objects are the four
linearly independent vierbeins (these are parallel vector fields rep-
resented by the appellation “teleparallel”). The advantage of this
framework is that the torsion tensor is formed solely from prod-
ucts of first derivatives of the tetrad. As described in [2], the
Lagrangian density T can be constructed from this torsion ten-
sor under the assumptions of invariance under general coordinate
transformations, global Lorentz transformations, and the parity op-
eration, along with requiring the Lagrangian density to be second
order in the torsion tensor. Thus, apart from possible conceptual
differences, TEGR is completely equivalent and indistinguishable
form General Relativity (GR) at the level of equations, both back-
ground and perturbation ones.

On the other hand, in General Relativity one can add the
quintessence scalar field in order to acquire a dynamical dark en-
ergy sector, a scenario that exhibits a very interesting cosmological
behavior and has gained a huge amount of research [3]. Amongst
others, one can generalize it by including a nonminimal coupling
between the quintessence field and gravity [4], or more generally
extend it to the scalar-tensor paradigm [5]. One can also use a
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phantom instead of a canonical field [6], or the combination of
both these fields in a unified scenario called quintom [7].

In this letter we are interested in formulating “teleparallel dark
energy”, adding a canonical scalar field in TEGR. In the mini-
mal coupling case the resulting theory is identical to the ordi-
nary quintessence, both at the background and perturbation levels.
However, when the nonminimal coupling is switched on, telepar-
allel dark energy is different from its GR counterpart, and the
cosmological behavior of such a new scenario proves to be very
interesting.

2. Quintessence in general relativity

Let us review very briefly the quintessence paradigm in general
relativity. In such a scenario the dark energy sector is attributed to
a homogeneous scalar field φ, and the action is given by [4]

S =
∫

d4x
√−g

[
R

2κ2
+ 1

2

(
∂μφ∂μφ + ξ Rφ2) − V (φ) + Lm

]
,

(1)

with κ2 = 8πG , c = 1, V (φ) the scalar-field potential, ξ the non-
minimal coupling parameter, R the Ricci scalar, and Lm the matter
Lagrangian. Note the difference in the metric signature that exists
amongst the various works in the literature and the corresponding
sign changes in the action, since a change in the metric signature
leads gμν , � and Rμν to change sign, while R and the energy-
momentum tensor remain unaffected [4]. In this letter we use
the signature (+,−,−,−) in all sections, just to be closer to the
literature of teleparallel gravity. Thus, under this convention, the
conformal value of ξ is −1/6.
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In the case of a flat Friedmann–Robertson–Walker (FRW) back-
ground metric

ds2 = dt2 − a2(t)δi j dxi dx j, (2)

where t is the cosmic time, xi are the comoving spatial coordinates
and a(t) is the scale factor, the Friedmann equations write as

H2 = κ2

3
(ρφ + ρm),

Ḣ = −κ2

2
(ρφ + pφ + ρm + pm), (3)

where H = ȧ/a is the Hubble parameter, a dot denotes differen-
tiation with respect to t , and ρm and pm are the matter energy
density and pressure, respectively, following the standard evolution
equation ρ̇m + 3H(1 + wm)ρm = 0, with wm = pm/ρm the matter
equation-of-state parameter. Additionally, we have introduced the
energy density and pressure of the nonminimally coupled scalar
field, given by [4]:

ρφ = 1

2
φ̇2 + V (φ) − 6ξ Hφφ̇ − 3ξ H2φ2, (4)

pφ = 1

2
(1 + 4ξ)φ̇2 − V (φ) + 2ξ(1 + 6ξ)Ḣφ2

− 2ξ Hφφ̇ + 3ξ(1 + 8ξ)H2φ2 − 2ξφV ′(φ), (5)

where a prime denotes derivative with respect to φ. We note that
the above relations have been simplified by using the useful ex-
pression R = 6(Ḣ + 2H2) in the FRW geometry.

As mentioned above, in such a scenario, dark energy is at-
tributed to the scalar field, and thus its equation-of-state parame-
ter reads:

w D E ≡ wφ = pφ

ρφ

. (6)

Finally, the equations close by considering the evolution equation
for the scalar field [4]:

φ̈ + 3Hφ̇ − 6ξ
(

Ḣ + 2H2)φ + V ′(φ) = 0, (7)

which can alternatively be written in the standard form ρ̇φ +
3H(1 + wφ)ρφ = 0.

3. Teleparallel equivalent to general relativity (TEGR)

We now briefly review TEGR. The notation is as follows: Greek
indices μ,ν, . . . and capital Latin indices A, B, . . . run over all co-
ordinate and tangent space-time 0, 1, 2, 3, while lower case Latin
indices (from the middle of the alphabet) i, j, . . . and lower case
Latin indices (from the beginning of the alphabet) a,b, . . . run over
spatial and tangent space coordinates 1, 2, 3, respectively.

As stated in Introduction, the dynamical variable of “teleparal-
lel” gravity is the vierbein field eA(xμ). This forms an orthonormal
basis for the tangent space at each point xμ of the manifold, that is
eA · eB = ηAB , where ηAB = diag(1,−1,−1,−1). Furthermore, the
vector eA can be analyzed with the use of its components eμ

A in a
coordinate basis, that is eA = eμ

A ∂μ .
In such a construction, the metric tensor is obtained from the

dual vierbein as

gμν(x) = ηABe A
μ(x)eB

ν (x). (8)

Contrary to GR, which uses the torsionless Levi–Civita connection,
in TEGR ones takes the curvatureless Weitzenböck connection [8],
whose torsion tensor reads

T λ
μν ≡ w

Γ
λ

νμ− w
Γ

λ

μν= eλ
A

(
∂μe A

ν − ∂νe A
μ

)
, (9)
where
w
Γ

λ

νμ≡ eλ
A ∂μe A

ν . Moreover, the contorsion tensor, which
equals to the difference between Weitzenböck and Levi–Civita con-
nections, is defined as K μν

ρ ≡ − 1
2 (T μν

ρ − T νμ
ρ − Tρ

μν) and we
also define Sρ

μν ≡ 1
2 (K μν

ρ + δ
μ
ρ T αν

α − δν
ρ T αμ

α).
In the present formalism all the information concerning the

gravitational field is included in the torsion tensor T λ
μν . Using the

above quantities one can extract the form of the “teleparallel La-
grangian”, which is nothing else than the torsion scalar, namely [1,
2,9]:

L = T ≡ Sρ
μν T ρ

μν = 1

4
T ρμν Tρμν

+ 1

2
T ρμν Tνμρ − Tρμ

ρ T νμ
ν. (10)

In summary, the simplest action in a universe governed by
teleparallel gravity is

I =
∫

d4xe

[
T

2κ2
+ Lm

]
, (11)

where e = det(e A
μ) = √−g (one could also include a cosmological

constant). Variation with respect to the vierbein fields gives equa-
tion of motion

e−1∂μ

(
eeρ

A Sρ
μν

) − eλ
A T ρ

μλ Sρ
νμ − 1

4
eν

A T = κ2

2
eρ

A

em
T

ν

ρ, (12)

where
em
T

ν

ρ stands for the usual energy-momentum tensor. These
equations are exactly the same as those of GR for every geome-
try choice. In particular, for the FRW background metric (2), the
vierbein choice of the form

e A
μ = diag(1,a,a,a) (13)

is an exact solution [2] of the field equation in Eq. (12), which
does not generate a divergent energy for the whole space-time.
Furthermore, it is easily seen that the corresponding Friedmann
equations are identical to the GR ones, both at the background and
perturbation levels [1,2,9].

4. Teleparallel dark energy

Let us now construct teleparallel dark energy. This will be done
by adding a scalar field in the equivalent, teleparallel, formulation
of GR. Thus, the action will simply read:

S =
∫

d4xe

[
T

2κ2
+ 1

2

(
∂μφ∂μφ + ξ T φ2) − V (φ) + Lm

]
. (14)

We emphasize that in the above action a nonminimal coupling
between the scalar field and gravity is allowed. Although in the
nonminimal case one could use alternative torsion scalars, we pre-
fer to keep the standard one for simplicity. We also note that the
action in (14) with the torsion formulation of GR is similar to the
standard nonminimal quintessence where the scalar field couples
to the Ricci scalar.

Variation of action (14) with respect to the vierbein fields yields
equation of motion
(

2

κ2
+ 2ξφ2

)[
e−1∂μ

(
eeρ

A Sρ
μν

) − eλ
A T ρ

μλ Sρ
νμ − 1

4
eν

A T

]

− eν
A

[
1

2
∂μφ∂μφ − V (φ)

]
+ eμ

A ∂νφ∂μφ

+ 4ξeρ Sρ
μνφ(∂μφ) = eρ em

T
ν

ρ . (15)
A A
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Therefore, imposing the FRW geometry of the form (13) (that is
(2)) we obtain the same Friedmann equations as in the conven-
tional quintessence, namely (3), however in this case the scalar
field energy density and pressure become:

ρφ = 1

2
φ̇2 + V (φ) − 3ξ H2φ2, (16)

pφ = 1

2
φ̇2 − V (φ) + 4ξ Hφφ̇ + ξ

(
3H2 + 2Ḣ

)
φ2. (17)

Additionally, variation of the action with respect to the scalar field
provides its evolution equation, namely:

φ̈ + 3Hφ̇ + 6ξ H2φ + V ′(φ) = 0. (18)

Note that in the above expressions we have used the useful rela-
tion T = −6H2, which straightforwardly arises from the calculation
of (10) for the FRW geometry.

In this scenario, similar to the standard quintessence, dark en-
ergy is attributed to the scalar field, and thus its equation-of-state
parameter (w D E ) is defined to be the same as that in (6), but ρφ

and pφ are now given by (16) and (17), respectively. Finally, one
can see that the scalar field evolution (18) leads to the standard
relation ρ̇φ + 3H(1 + wφ)ρφ = 0.

5. Cosmological implications

We now explore the cosmological implications of the sce-
nario at hand. Firstly, we immediately observe that in the case
of the minimal coupling, teleparallel dark energy coincides with
quintessence (see (4)–(5) and (16)–(17)), and one can verify that
at the level of perturbations too. This is expected since, concern-
ing the gravitational sector, TEGR is identical with GR, and in the
minimal case one just adds a distinct scalar sector, thus making no
difference whether it is added in either of the two theories. How-
ever, things are different if we switch on the nonminimal coupling.
In this case the additional scalar sector is coupled to gravity, with
the curvature scalar in GR and with the torsion scalar in TEGR,
and thus the resulting coupled equations do not coincide. Clearly,
teleparallel dark energy, under the nonminimal coupling, is a dif-
ferent theory.

Let us proceed in presenting some basic and general features of
the nonminimal coupling of the scalar-torsion theory. Apart from
the straightforward results that dark energy possesses a dynamical
nature as well as it can drive the universe acceleration, the most
interesting and direct consequence of the dark energy density and
pressure relations (16)–(17) is that the dark energy equation-of-
state parameter can lie in the quintessence regime (w D E > −1), in
the phantom regime (w D E < −1), or exhibit the phantom-divide
crossing during cosmological evolution. This is a radical difference
with the quintessence scenario and reveals the capabilities of the
construction.

In order to present the above features in a more transpar-
ent way, we evolve numerically the cosmological system for dust
matter (wm ≈ 0), using the redshift z = a0/a − 1 as the indepen-
dent variable, imposing the present scale factor a0 to be equal
to 1, the dark energy density ΩD E ≡ κ2ρφ/(3H2) at present to
be ≈ 0.72 and its initial value to be ≈ 0. Finally, concerning the
scalar field potential we use the exponential ansatz of the form
V = V 0eλφ .

In Fig. 1 we depict the w D E -evolution for three realizations
of the scenario at hand. In the case of the black-solid curve the
teleparallel dark energy behaves like quintessence, in the red-
dashed curve it behaves like a phantom, while in blue-dotted curve
the dark energy exhibits the phantom-divide crossing during the
evolution. Note that the crossing behavior in Fig. 1 is the one
Fig. 1. Evolution of the dark energy equation-of-state parameter w D E as a func-
tion of the redshift z, for three cases of the teleparallel dark energy scenario, in
the exponential scalar-field potential ansatz of the form V = V 0eλφ . The black-solid
curve presents quintessence-like behavior and corresponds to ξ = −0.4, λ = 1.5 and
V 0 ≈ 2 × 10−13, the red-dashed curve presents phantom-like behavior and corre-
sponds to ξ = −0.8, λ = 0.05 and V 0 ≈ 10−13, and the blue-dotted curve presents
the phantom-divide crossing and corresponds to ξ = −0.25, λ = 40 and V 0 ≈ 10−12.
λ and V 0 are measured in κ2-units and the −1-line is depicted for convenience.

favored by the observational data, in contrast with viable f (R)-
gravity models where it is the opposite one [10]. We remark that
in the above graphs we focus on their qualitative features, and
in particular we maintain the same potential just to stress that
in principle one can obtain the various behaviors with the same
potential. Clearly, one could be quantitatively more accurate and
impose the observational w D E (z) as an input, reconstructing the
corresponding potential. However in the present work we desire
to remain as general as possible.

6. Discussion–conclusions

In the present scenario of “teleparallel” dark energy we have
added a scalar field to the teleparallel equivalent to general relativ-
ity (TEGR), allowing for a nonminimal coupling between the field
and gravity. In the minimally-coupled case the cosmological equa-
tions coincide with those of the standard quintessence. However
when the nonminimal coupling is switched on the resulting theory
exhibits different behavior. In particular, although the scalar field is
canonical, one can obtain a dark energy sector being quintessence-
like, phantom-like, or experiencing the phantom-divide crossing
during evolution, a behavior that is much richer comparing to Gen-
eral Relativity (GR) with a scalar field. Moreover, the fact that the
phantom regime can be described without the need of phantom
fields, which have ambiguous quantum behavior [11], is a signifi-
cant advantage.

The physical reason for the aforementioned difference, despite
the equivalence of pure GR and pure TEGR, is that while in GR
one couples the scalar field with the only suitable gravitational
scalar, namely the Ricci scalar R , in the later one couples the scalar
field with the only suitable gravitational scalar, namely the torsion
scalar T . The richness of the resulting theory comparing to GR
quintessence is additionally manifested in the fact that, although
in the later one can perform a conformal transformation and tran-
sit to an “equivalent”, minimally-coupled, theory with transformed
field and potential [4], in the former such a transformation does
not exist since one obtains extra terms depending on the torsion
tensor itself, as can be easily verified transforming the vierbeins as
eμ

A → Ω ẽμ
A (one applies in our case the similar analysis of [12] of

the case of f (T ) scenarios). Thus, teleparallel dark energy cannot
be transformed to an “equivalent” minimally coupled form, which
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is known to be able to describe only the quintessence regime,
and this indicates its richer structure. Such an absence of confor-
mal transformation exists in other cosmological scenarios too, for
example in scalar-field models with non-minimal derivative cou-
plings, where it is also known that the resulting theories possess a
richer structure [13].

The addition of a scalar field to TEGR was inspired by the cor-
responding procedure in GR. However, although in GR one can
alternatively and equivalently generalize the action to f (R), free-
ing himself of the need to add the scalar field, in the teleparallel
formulation of GR the generalization to f (T ) [14] seems to spoil
the local Lorentz invariance for all functions apart from the lin-
ear one [15]. However, at the background level no new degrees of
freedom are present, while at linear perturbation the new vector
degree of freedom only satisfies constraint equations [16]. Simi-
larly, in our generalization of TEGR, in the case of non-minimal
coupling, a Lorentz-violating term appears (the last term in the
left hand side of (15)), despite the fact that the theory is lin-
ear in T . However, no new degree of freedom will appear at the
background level on which we focus on this work. Clearly, going
beyond background evolution and examine whether the Lorenz
violations do indeed appear under cosmological geometries and
scales (we have checked that at the low-energy limit, the theo-
ry’s basic Parametrized Post Newtonian parameters are consistent
with Solar System observations), and if they can be detected, is an
interesting and open subject, as it is in f (T ) gravity too, and will
be incorporated in more details elsewhere.

In summary, the rich behavior of teleparallel dark energy makes
it a promising cosmological scenario. In this work we have de-
sired to remain as general as possible, and present its basic and
novel features. Clearly, before it can be considered as a good candi-
date for the description of nature, one needs to investigate various
subjects, such as to perform a detailed perturbation analysis, to
use observational data in order to constrain the parameters of the
model, to examine the phase-space behavior in order to reveal the
late-time cosmological features, etc. Such aspects, although neces-
sary, lie outside the goal of the present work and are left for future
investigations.
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