208 research outputs found

    A quantitative analysis of monochromaticity in genetic interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genetic interaction refers to the deviation of phenotypes from the expected when perturbing two genes simultaneously. Studying genetic interactions help clarify relationships between genes, such as compensation and masking, and identify gene groups of functional modules. Recently, several genome-scale experiments for measuring quantitative (positive and negative) genetic interactions have been conducted. The results revealed that genes in the same module usually interact with each other in a consistent way (pure positive or negative); this phenomenon was designated as monochromaticity. Monochromaticity might be the underlying principle that can be utilized to unveil the modularity of cellular networks. However, no appropriate quantitative measurement for this phenomenon has been proposed.</p> <p>Results</p> <p>In this study, we propose the monochromatic index (MCI), which is able to quantitatively evaluate the monochromaticity of potential functional modules of genes, and the MCI was used to study genetic landscapes in different cellular subsystems. We demonstrated that MCI not only amend the deficiencies of MP-score but also properly incorporate the background effect. The results showed that not only within-complex but also between-complex connections present significant monochromatic tendency. Furthermore, we also found that significantly higher proportion of protein complexes are connected by negative genetic interactions in metabolic network, while transcription and translation system adopts relatively even number of positive and negative genetic interactions to link protein complexes.</p> <p>Conclusion</p> <p>In summary, we demonstrate that MCI improves deficiencies suffered by MP-score, and can be used to evaluate monochromaticity in a quantitative manner. In addition, it also helps to unveil features of genetic landscapes in different cellular subsystems. Moreover, MCI can be easily applied to data produced by different types of genetic interaction methodologies such as Synthetic Genetic Array (SGA), and epistatic miniarray profile (E-MAP).</p

    Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis is widely investigated in conjunction with cancer development, in particular because of the possibility of early stage detection and of new therapeutic strategies. However, such studies are negatively affected by the limitations of imaging techniques in the detection of microscopic blood vessels (diameter 3-5 μm) grown under angiogenic stress. We report that synchrotron-based X-ray imaging techniques with very high spatial resolution can overcome this obstacle, provided that suitable contrast agents are used.</p> <p>Results</p> <p>We tested different contrast agents based on gold nanoparticles (AuNPs) for the detection of cancer-related angiogenesis by synchrotron microradiology, microtomography and high resolution X-ray microscopy. Among them only bare-AuNPs in conjunction with heparin injection provided sufficient contrast to allow <it>in vivo </it>detection of small capillary species (the smallest measured lumen diameters were 3-5 μm). The detected vessel density was 3-7 times higher than with other nanoparticles. We also found that bare-AuNPs with heparin allows detecting symptoms of local extravascular nanoparticle diffusion in tumor areas where capillary leakage appeared.</p> <p>Conclusions</p> <p>Although high-Z AuNPs are natural candidates as radiology contrast agents, their success is not guaranteed, in particular when targeting very small blood vessels in tumor-related angiography. We found that AuNPs injected with heparin produced the contrast level needed to reveal--for the first time by X-ray imaging--tumor microvessels with 3-5 μm diameter as well as extravascular diffusion due to basal membrane defenestration. These results open the interesting possibility of functional imaging of the tumor microvasculature, of its development and organization, as well as of the effects of anti-angiogenic drugs.</p

    Electroconvulsive Therapy and Risk of Dementia—A Nationwide Cohort Study in Taiwan

    Get PDF
    Background: Electroconvulsive therapy (ECT) is an effective treatment for schizophrenia, bipolar disorder, and major depressive disorder, and a temporary memory loss may occur after ECT. However, the association between ECT in patients with schizophrenia, bipolar disorder, and major depressive disorder, and the risk of dementia is yet to be examined.Objective: This study aimed to clarify as to whether ECT is associated with the risk of dementia after ECT in patients with schizophrenia, bipolar disorder, and major depressive disorder, using Taiwan's National Health Insurance Research Database (NHIRD).Methods: A total of 3,796 enrolled participants (schizophrenia, 46.68%; bipolar disorder, 11.77%; and major depressive disorder, 41.55%) with 994 patients who had received ECT and 2,982 controls matched for sex and age, between January 1, and December 31, 2000, were selected from the NHIRD. After adjusting for confounding factors, Fine and Gray's survival analysis was used to compare the risk of developing dementia during the 10 years of follow-up.Results: Of the study patients, 45 (4.53%) of them developed dementia when compared to 149 (5.0%) in the control group. Fine and Gray's survival analysis revealed that the study patients were not associated with an increased risk of dementia [hazard ratio (HR) = 0.612, 95% confidence interval (CI) = 0.438–1.854, P = 0.325]. After adjusting for sex, age, monthly income, urbanization level, geographic region, and comorbidities, the adjusted HR was 0.633 (95% CI = 0.448 – 1.895, P = 0.304).Conclusion: This study supports that ECT was not associated with the increased risk of dementia in patients with schizophrenia, bipolar disorder, and major depressive disorder, using the NHIRD

    Application of Advanced Framework Technology in Smart Cities to Improve Resource Utilization

    Get PDF
    Nowadays, the application technology and demand are growth; there have been millions of solutions for user communication in smart cities. However, the quality of the autonomy of handheld devices and the information exchange of applications are functions of requesting services or participating in communications. Therefore, it is very difficult and tedious to implement resource management and control in such an environment. This study here proposes distributed cyber-physical systems (CPS) for agent-based middleware framework (AMF) using to achieve technology, thereby improving the reliability of environmental communication in smart cities. The technical solution has the characteristics of avoiding the problem of data source interruption because of the proxy technology of the linear calculation model. The aforementioned agents are independent and autonomous of each other in terms of providing seamless resource sharing and response scheduling, and have nothing to do with communication time and request queries. In this study, the architecture mainly uses the best linear calculation model to classify overlapping agents, and then allocates non-overlapping resources, and finally analyzes the overall architecture operation performance by responding to processed queries, storage utilization and resource usage, pause time and response

    Effect of Catalyst Morphology on the Quality of CVD Grown Graphene

    Get PDF
    The strong interest in graphene has motivated large effort in the scalable production of high-quality material. The potential of chemical vapor deposition on Cu foil to produce such graphene is impeded by lacking understanding of the relation between catalyst properties and graphene performance. We here present a systematic analysis of the catalyst morphology and its effect on electrical properties of graphene. We find that nanometer sized particles increase the density of bilayer regions but have no significant effect on carrier transport. Long wavelength roughness (waviness), on the other hand, generates defective graphitic regions that deteriorate carrier mobility. These findings shed light on the graphene formation process on Cu substrates and open a route to improve graphene quality for electronics applications

    Assessing the Decision-Making Process in Human-Robot Collaboration Using a Lego-like EEG Headset

    Get PDF
    Human-robot collaboration (HRC) has become an emerging field, where the use of a robotic agent has been shifted from a supportive machine to a decision-making collaborator. A variety of factors can influence the effectiveness of decision-making processes during HRC, including the system-related (e.g., robot capability) and human-related (e.g., individual knowledgeability) factors. As a variety of contextual factors can significantly impact the human-robot decision-making process in collaborative contexts, the present study adopts a Lego-like EEG headset to collect and examine human brain activities and utilizes multiple questionnaires to evaluate participants’ cognitive perceptions toward the robot. A user study was conducted where two levels of robot capabilities (high vs. low) were manipulated to provide system recommendations. The participants were also identified into two groups based on their computational thinking (CT) ability. The EEG results revealed that different levels of CT abilities trigger different brainwaves, and the participants’ trust calibration of the robot also varies the resultant brain activities

    Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative analysis of nanoparticle uptake at the cellular level is critical to nanomedicine procedures. In particular, it is required for a realistic evaluation of their effects. Unfortunately, quantitative measurements of nanoparticle uptake still pose a formidable technical challenge. We present here a method to tackle this problem and analyze the number of metal nanoparticles present in different types of cells. The method relies on high-lateral-resolution (better than 30 nm) transmission x-ray microimages with both absorption contrast and phase contrast -- including two-dimensional (2D) projection images and three-dimensional (3D) tomographic reconstructions that directly show the nanoparticles.</p> <p>Results</p> <p>Practical tests were successfully conducted on bare and polyethylene glycol (PEG) coated gold nanoparticles obtained by x-ray irradiation. Using two different cell lines, EMT and HeLa, we obtained the number of nanoparticle clusters uptaken by each cell and the cluster size. Furthermore, the analysis revealed interesting differences between 2D and 3D cultured cells as well as between 2D and 3D data for the same 3D specimen.</p> <p>Conclusions</p> <p>We demonstrated the feasibility and effectiveness of our method, proving that it is accurate enough to measure the nanoparticle uptake differences between cells as well as the sizes of the formed nanoparticle clusters. The differences between 2D and 3D cultures and 2D and 3D images stress the importance of the 3D analysis which is made possible by our approach.</p

    Clinical Study Underestimated Rate of Status Epilepticus according to the Traditional Definition of Status Epilepticus

    Get PDF
    properly cited. Purpose. Status epilepticus (SE) is an important neurological emergency. Early diagnosis could improve outcomes. Traditionally, SE is defined as seizures lasting at least 30 min or repeated seizures over 30 min without recovery of consciousness. Some specialists argued that the duration of seizures qualifying as SE should be shorter and the operational definition of SE was suggested. It is unclear whether physicians follow the operational definition. The objective of this study was to investigate whether the incidence of SE was underestimated and to investigate the underestimate rate. Methods. This retrospective study evaluates the difference in diagnosis of SE between operational definition and traditional definition of status epilepticus. Between July 1, 2012, and June 30, 2014, patients discharged with ICD-9 codes for epilepsy (345.X) in Chia-Yi Christian Hospital were included in the study. A seizure lasting at least 30 min or repeated seizures over 30 min without recovery of consciousness were considered SE according to the traditional definition of SE (TDSE). A seizure lasting between 5 and 30 min was considered SE according to the operational definition of SE (ODSE); it was defined as underestimated status epilepticus (UESE). Results. During a 2-year period, there were 256 episodes of seizures requiring hospital admission. Among the 256 episodes, 99 episodes lasted longer than 5 min, out of which 61 (61.6%) episodes persisted over 30 min (TDSE) and 38 (38.4%) episodes continued between 5 and 30 min (UESE). In the 38 episodes of seizure lasting 5 to 30 minutes, only one episode was previously discharged as SE (ICD-9-CM 345.3). Conclusion. We underestimated 37.4% of SE. Continuing education regarding the diagnosis and treatment of epilepsy is important for physicians
    corecore