179 research outputs found

    Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Get PDF
    [[abstract]]Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5โ€‰Gy, 1โ€‰Gy, 2.5โ€‰Gy, and 5โ€‰Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1โ€‰Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1โ€‰Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.[[notice]]่ฃœๆญฃๅฎŒ็•ข[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]้›ปๅญ

    Glyoxalase-I Is a Novel Prognosis Factor Associated with Gastric Cancer Progression

    Get PDF
    Glyoxalase I (GLO1), a methylglyoxal detoxification enzyme, is implicated in the progression of human malignancies. The role of GLO1 in gastric cancer development or progression is currently unclear. The expression of GLO1 was determined in primary gastric cancer specimens using quantitative polymerase chain reaction, immunohistochemistry (IHC), and western blotting analyses. GLO1 expression was higher in gastric cancer tissues, compared with that in adjacent noncancerous tissues. Elevated expression of GLO1 was significantly associated with gastric wall invasion, lymph node metastasis, and pathological stage, suggesting a novel role of GLO1 in gastric cancer development and progression. The 5-year survival rate of the lower GLO1 expression groups was significantly greater than that of the higher expression groups (log rank Pโ€Š=โ€Š0.0373) in IHC experiments. Over-expression of GLO1 in gastric cancer cell lines increases cell proliferation, migration and invasiveness. Conversely, down-regulation of GLO1 with shRNA led to a marked reduction in the migration and invasion abilities. Our data strongly suggest that high expression of GLO1 in gastric cancer enhances the metastasis ability of tumor cells in vitro and in vivo, and support its efficacy as a potential marker for the detection and prognosis of gastric cancer

    Identification of Novel Susceptibility Loci for Kawasaki Disease in a Han Chinese Population by a Genome-Wide Association Study

    Get PDF
    Kawasaki disease (KD) is an acute systemic vasculitis syndrome that primarily affects infants and young children. Its etiology is unknown; however, epidemiological findings suggest that genetic predisposition underlies disease susceptibility. Taiwan has the third-highest incidence of KD in the world, after Japan and Korea. To investigate novel mechanisms that might predispose individuals to KD, we conducted a genome-wide association study (GWAS) in 250 KD patients and 446 controls in a Han Chinese population residing in Taiwan, and further validated our findings in an independent Han Chinese cohort of 208 cases and 366 controls. The most strongly associated single-nucleotide polymorphisms (SNPs) detected in the joint analysis corresponded to three novel loci. Among these KD-associated SNPs three were close to the COPB2 (coatomer protein complex beta-2 subunit) gene: rs1873668 (pโ€Š=โ€Š9.52ร—10โˆ’5), rs4243399 (pโ€Š=โ€Š9.93ร—10โˆ’5), and rs16849083 (pโ€Š=โ€Š9.93ร—10โˆ’5). We also identified a SNP in the intronic region of the ERAP1 (endoplasmic reticulum amino peptidase 1) gene (rs149481, pbestโ€Š=โ€Š4.61ร—10โˆ’5). Six SNPs (rs17113284, rs8005468, rs10129255, rs2007467, rs10150241, and rs12590667) clustered in an area containing immunoglobulin heavy chain variable regions genes, with pbest-values between 2.08ร—10โˆ’5 and 8.93ร—10โˆ’6, were also identified. This is the first KD GWAS performed in a Han Chinese population. The novel KD candidates we identified have been implicated in T cell receptor signaling, regulation of proinflammatory cytokines, as well as antibody-mediated immune responses. These findings may lead to a better understanding of the underlying molecular pathogenesis of KD

    A comprehensive characterization of aggravated aging-related changes in T lymphocytes and monocytes in end-stage renal disease: The iESRD study

    Get PDF
    Background: Patients with end-stage renal disease (ESRD) exhibit a premature aging phenotype of the immune system. Nevertheless, the etiology and impact of these changes in ESRD patients remain unknown. Results: Compared to healthy individuals, ESRD patients exhibit accelerated immunosenescence in both T cell and monocyte compartments, characterized by a dramatic reduction in naรฏve CD4+ and CD8+ T cell numbers but increase in CD8+ TEMRA cell and proinflammatory monocyte numbers. Notably, within ESRD patients, aging-related immune changes positively correlated not only with increasing age but also with longer dialysis vintage. In multivariable-adjusted logistic regression models, the combination of high terminally differentiated CD8+ T cell level and high intermediate monocyte level, as a composite predictive immunophenotype, was independently associated with prevalent coronary artery disease as well as cardiovascular disease, after adjustment for age, sex, systemic inflammation and presence of diabetes. Levels of terminally differentiated CD8+ T cells also positively correlated with the level of uremic toxin p-cresyl sulfate. Conclusions: Aging-associated adaptive and innate immune changes are aggravated in ESRD and are associated with cardiovascular diseases. For the first time, our study demonstrates the potential link between immunosenescence in ESRD and duration of exposure to the uremic milieu

    Pilot Scale Production of Highly Efficacious and Stable Enterovirus 71 Vaccine Candidates

    Get PDF
    BACKGROUND: Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. PRINCIPAL FINDING: In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 ยฐC for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 ยฐC and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. CONCLUSION: These results provide valuable information supporting the current cell-based serum-free EV71 vaccine candidate going into human Phase I clinical trials

    Transforming Growth Factor-ฮฒ1 Suppresses Hepatitis B Virus Replication by the Reduction of Hepatocyte Nuclear Factor-4ฮฑ Expression

    Get PDF
    Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV) replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-ฮฒ1) could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-ฮฒ1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA), core protein (HBc), nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4ฮฑ) binding element(s) within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-ฮฒ1 on HBV regulation. Furthermore, we found that TGF-ฮฒ1 treatment significantly repressed HNF-4ฮฑ expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4ฮฑ was sufficient to reduce HBc synthesis as TGF-ฮฒ1 did. Prevention of HNF-4ฮฑ degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-ฮฒ1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4ฮฑ in TGF-ฮฒ1-treated cells. Our data clarify the mechanism by which TGF-ฮฒ1 suppresses HBV replication, primarily through modulating the expression of HNF-4ฮฑ gene

    Plastidial Starch Phosphorylase in Sweet Potato Roots Is Proteolytically Modified by Protein-Protein Interaction with the 20S Proteasome

    Get PDF
    Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity. The two-dimensional gel electrophoresis, mass spectrometry, and reverse immunoprecipitation analyses showed that HX is composed of Pho1 and the 20S proteasome. Incubating sweet potato roots at 45ยฐC triggers a stepwise degradation of Pho1; however, the degradation process can be partially inhibited by specific proteasome inhibitor MG132. The proteolytically modified Pho1 displays a lower binding affinity toward glucose 1-phosphate and a reduced starch-synthesizing activity. This study suggests that the 20S proteasome interacts with Pho1 and is involved in the regulation of the catalytic activity of Pho1 in sweet potato roots under heat stress conditions

    GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium

    Get PDF
    Decline in muscle strength with aging is an important predictor of health trajectory in the elderly. Several factors, including genetics, are proposed contributors to variability in muscle strength. To identify genetic contributors to muscle strength, a meta-analysis of genomewide association studies of handgrip was conducted. Grip strength was measured using a handheld dynamometer in 27ย 581 individuals of European descent over 65ย years of age from 14 cohort studies. Genomewide association analysis was conducted on ~2.7 million imputed and genotyped variants (SNPs). Replication of the most significant findings was conducted using data from 6393 individuals from three cohorts. GWAS of lower body strength was also characterized in a subset of cohorts. Two genomewide significant (P-value< 5ย ร—ย 10โˆ’8) and 39 suggestive (P-value< 5ย ร—ย 10โˆ’5) associations were observed from meta-analysis of the discovery cohorts. After meta-analysis with replication cohorts, genomewide significant association was observed for rs752045 on chromosome 8 (ฮฒย =ย 0.47, SEย =ย 0.08, P-valueย =ย 5.20ย ร—ย 10โˆ’10). This SNP is mapped to an intergenic region and is located within an accessible chromatin region (DNase hypersensitivity site) in skeletal muscle myotubes differentiated from the human skeletal muscle myoblasts cell line. This locus alters a binding motif of the CCAAT/enhancer-binding protein-ฮฒ (CEBPB) that is implicated in muscle repair mechanisms. GWAS of lower body strength did not yield significant results. A common genetic variant in a chromosomal region that regulates myotube differentiation and muscle repair may contribute to variability in grip strength in the elderly. Further studies are needed to uncover the mechanisms that link this genetic variant with muscle strength
    • โ€ฆ
    corecore