94 research outputs found

    Antagonistic Regulation, Yet Synergistic Defense: Effect of Bergapten and Protease Inhibitor on Development of Cowpea Bruchid Callosobruchus maculatus

    Get PDF
    The furanocoumarin compound bergapten is a plant secondary metabolite that has anti-insect function. When incorporated into artificial diet, it retarded cowpea bruchid development, decreased fecundity, and caused mortality at a sufficient dose. cDNA microarray analysis indicated that cowpea bruchid altered expression of 543 midgut genes in response to dietary bergapten. Among these bergapten-regulated genes, 225 have known functions; for instance, those encoding proteins related to nutrient transport and metabolism, development, detoxification, defense and various cellular functions. Such differential gene regulation presumably facilitates the bruchids' countering the negative effect of dietary bergapten. Many genes did not have homology (E-value cutoff 10(−6)) with known genes in a BlastX search (206), or had homology only with genes of unknown function (112). Interestingly, when compared with the transcriptomic profile of cowpea bruchids treated with dietary soybean cysteine protease inhibitor N (scN), 195 out of 200 coregulated midgut genes are oppositely regulated by the two compounds. Simultaneous administration of bergapten and scN attenuated magnitude of change in selected oppositely-regulated genes, as well as led to synergistic delay in insect development. Therefore, targeting insect vulnerable sites that may compromise each other's counter-defensive response has the potential to increase the efficacy of the anti-insect molecules

    Liver transplantation for acute-on-chronic liver failure

    Get PDF
    Purpose: To evaluate the outcome of liver transplantation for acute-on-chronic liver failure. Patients and methods: From November 1991 to December 2007, 517 patients underwent liver transplantation at Queen Mary Hospital, Hong Kong. Among them, 149 had acute-on-chronic liver failure as defined in the recent Asian Pacific Association for the Study of Liver Consensus Meeting. Their clinical data were reviewed and their survival outcomes were compared with those of patients who underwent liver transplantation for fulminant hepatic failure and for cirrhosis only in the same period. Results: The patients with acute-on-chronic liver failure included 50 patients having acute exacerbation of chronic hepatitis B and 99 cirrhotic patients with acute deterioration. Their median model for end-stage liver disease scores were 35 and 37, respectively. Preoperative infection (35%), hepatorenal syndrome (38%), and respiratory failure (28.8%) were common. One hundred and three patients received living donor liver grafts and 46 patients received deceased donor liver grafts. The hospital mortality rate was 4.7%. The 5-year survival rates were 93.2% for patients with acute exacerbation of chronic hepatitis B and 90.5% for cirrhotic patients with acute deterioration. The results were similar to those of the patients with fulminant hepatic failure (n = 37) and the patients having cirrhosis only (n = 301). Conclusions: Liver transplantation for acute-on-chronic liver failure is life-saving, and the survival rates it attains are similar to those attained by transplantation for other liver conditions.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Origami-Based Flexible and Simple Tubular Polymer Electrolyte Membrane Fuel Cell Stack

    No full text
    © 2021 American Chemical Society.Flexible energy devices are essential for future small and flexible devices, and there are many challenges to create deformable energy devices. In this study, we developed a lightweight and flexible passive air-breathing polymer electrolyte membrane fuel cell (PEMFC) stack with a flexible 3D structure using a straw-like tubular design. This stack is lighter than a conventional PEMFC stack because it contains a smaller number of components. By applying a conical design, the device was easily assembled with the units connected in series using banded-type connections (i.e., without clamps or fixing parts). Moreover, for the first time, a conical reverse truss origami design was applied to the tubular PEMFC, which enabled 3D movement and reduced the volume of the PEMFC. The flexible tubular PEMFC is expected to be an energy source for small devices and can be used to replace wires or external fuel pipelines in devices that require mechanical movement.11Nsciescopu

    Guided cracking of electrodes by stretching prism-patterned membrane electrode assemblies for high-performance fuel cells

    Get PDF
    Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane. An electrode with guided cracks was formed by stretching the catalyst-coated Nafion membrane. The morphological features of the stretched membrane electrode assembly (MEA) were investigated with respect to variation in the prism pattern dimension (prism pitches of 20 μm and 50 μm) and applied strain (S ≈ 0.5 and 1.0). The behaviour of water on the surface of the cracked electrode was examined using environmental scanning electron microscopy. Guided cracks in the electrode layer were shown to be efficient water reservoirs and liquid water passages. The MEAs with and without guided cracks were incorporated into fuel cells, and electrochemical measurements were conducted. As expected, all MEAs with guided cracks exhibited better performance than conventional MEAs, mainly because of the improved water transport. © 2018 The Author(s)1

    Biomass waste, coffee grounds-derived carbon for lithium storage

    Get PDF
    Biomass waste-derived carbon is an attractive alternative with environmental benignity to obtain carbon material. In this study, we prepare carbon from coffee grounds as a biomass precursor using a simple, inexpensive, and environmentally friendly method through physical activation using only steam. The coffee-derived carbon, having a micropore-rich structure and a low extent of graphitization of disordered carbon, is developed and directly applied to lithium-ion battery anode material. Compared with the introduction of the Ketjenblack (KB) conducting agent (i.e., coffee-derived carbon with KB), the coffee-derived carbon itself achieves a reversible capacity of ~200 mAh/g (0.54 lithium per 6 carbons) at a current density of 100 mA/g after 100 cycles, along with excellent cycle stability. The origin of highly reversible lithium storage is attributed to the consistent diffusion-controlled intercalation/de-intercalation reaction in cycle life, which suggests that the bulk diffusion of lithium is favorable in the coffee-derived carbon itself, in the absence of a conducting agent. This study presents the preparation of carbon material through physical activation without the use of chemical activation agents and demonstrates an application of coffee-derived carbon in energy storage devices. (c) 2018, Korean Electrochemical Society. All rights reserve

    Exploring Novel Functions of the Small GTPase Ypt1p under Heat-Shock by Characterizing a Temperature-Sensitive Mutant Yeast Strain, ypt1-G80D

    No full text
    In our previous study, we found that Ypt1p, a Rab family small GTPase protein, exhibits a stress-driven structural and functional switch from a GTPase to a molecular chaperone, and mediates thermo tolerance in Saccharomyces cerevisiae. In the current study, we focused on the temperature-sensitive ypt1-G80D mutant, and found that the mutant cells are highly sensitive to heat-shock, due to a deficiency in the chaperone function of Ypt1pG80D. This defect results from an inability of the protein to form high molecular weight polymers, even though it retains almost normal GTPase function. The heat-stress sensitivity of ypt1-G80D cells was partially recovered by treatment with 4-phenylbutyric acid, a chemical chaperone. These findings indicate that loss of the chaperone function of Ypt1pG80D underlies the heat sensitivity of ypt1-G80D cells. We also compared the proteomes of YPT1 (wild-type) and ypt1-G80D cells to investigate Ypt1p-controlled proteins under heat-stress conditions. Our findings suggest that Ypt1p controls an abundance of proteins involved in metabolism, protein synthesis, cellular energy generation, stress response, and DNA regulation. Finally, we suggest that Ypt1p essentially regulates fundamental cellular processes under heat-stress conditions by acting as a molecular chaperone

    Structural modification of electrode for anion exchange membrane fuel cell by controlling ionomer dispersion

    No full text
    An appropriate electrode microstructure design should be necessary to achieve high-performance anion exchange membrane fuel cells (AEMFCs). In general, the electrodes are fabricated from catalyst slurries which contain self-assembled agglomerates of catalyst particles with ionomer dispersed in a solvent. Therefore, solvent nature greatly affects the microstructure of the electrode, such as the pore structure and the formation of triple-phase boundaries for electrochemical reactions. Here, we investigate the influence of solvent on the microstructure of I2 ionomer-based electrode and its performance using three alcohol-based solvents (ethanol, 2-propanol, and 2-methyl-2-propanol [tBuOH)) with different dielectric constants and similar boiling points. Various physical and electrochemical characterization confirmed that the electrode pore structure changes significantly depending on the type of solvent while the electrochemically active surface area hardly changes. Furthermore, the efect of the three electrodes with different pore structures on AEMFC performance is observed for anode and cathode, respectively. It is demonstrated that the porous electrode with large pores is more advantageous in performance than a dense electrode at both the anode and the cathode for AEMFC. Consequently, the membrane electrode assembly with porous tBuOH-based electrodes exhibits more than 40% higher performance (1.32 W cm(-2)) than dense ethanol-based electrodes (0.94 W cm(-2)).11Nsciescopu
    corecore