14 research outputs found

    Genomic architecture of pharmacological efficacy and adverse events.

    Get PDF
    The pharmacokinetic and pharmacodynamic disciplines address pharmacological traits, including efficacy and adverse events. Pharmacogenomics studies have identified pervasive genetic effects on treatment outcomes, resulting in the development of genetic biomarkers for optimization of drug therapy. Pharmacogenomics-based tests are already being applied in clinical decision making. However, despite substantial progress in identifying the genetic etiology of pharmacological response, current biomarker panels still largely rely on single gene tests with a large portion of the genetic effects remaining to be discovered. Future research must account for the combined effects of multiple genetic variants, incorporate pathway-based approaches, explore gene-gene interactions and nonprotein coding functional genetic variants, extend studies across ancestral populations, and prioritize laboratory characterization of molecular mechanisms. Because genetic factors can play a key role in drug response, accurate biomarker tests capturing the main genetic factors determining treatment outcomes have substantial potential for improving individual clinical care

    Genomic architecture of pharmacological efficacy and adverse events

    No full text
    The pharmacokinetic and pharmacodynamic disciplines address pharmacological traits, including efficacy and adverse events. Pharmacogenomics studies have identified pervasive genetic effects on treatment outcomes, resulting in the development of genetic biomarkers for optimization of drug therapy. Pharmacogenomics-based tests are already being applied in clinical decision making. However, despite substantial progress in identifying the genetic etiology of pharmacological response, current biomarker panels still largely rely on single gene tests with a large portion of the genetic effects remaining to be discovered. Future research must account for the combined effects of multiple genetic variants, incorporate pathway-based approaches, explore gene-gene interactions and nonprotein coding functional genetic variants, extend studies across ancestral populations, and prioritize laboratory characterization of molecular mechanisms. Because genetic factors can play a key role in drug response, accurate biomarker tests capturing the main genetic factors determining treatment outcomes have substantial potential for improving individual clinical care

    A Genome-Wide Association Study Identifies Novel Loci for Paclitaxel-Induced Sensory Peripheral Neuropathy in CALGB 40101

    No full text
    PURPOSE: Sensory peripheral neuropathy is a common and sometimes debilitating toxicity associated with paclitaxel therapy. This study aims to identify genetic risk factors for development of this toxicity. EXPERIMENTAL DESIGN: A prospective pharmacogenetic analysis of primary breast cancer patients randomized to the paclitaxel arm of CALGB 40101 was used to identify genetic predictors of the onset and severity of sensory peripheral neuropathy. A genome-wide association study in 855 subjects of European ancestry was performed and findings were replicated in additional European (n = 154) and African American (n = 117) subjects. RESULTS: A single nucleotide polymorphism in FGD4 was associated with the onset of sensory peripheral neuropathy in the discovery cohort (rs10771973; HR, 1.57; 95% CI, 1.30–1.91; P = 2.6 × 10(−6)) and in a European (HR, 1.72; 95% CI, 1.06–2.80; P = 0.013) and African American (HR, 1.93; 95% CI, 1.13-3.28; P = 6.7 × 10(−3)) replication cohort. There is also evidence that markers in additional genes, including EPHA5 (rs7349683) and FZD3 (rs10771973), were associated with the onset or severity of paclitaxel-induced sensory peripheral neuropathy. CONCLUSIONS: A genome-wide association study has identified novel genetic markers of paclitaxel-induced sensory peripheral neuropathy, including a common polymorphism in FGD4, a congenital peripheral neuropathy gene. These findings suggest that genetic variation may contribute to variation in development of this toxicity. Validation of these findings may allow for the identification of patients at increased risk of peripheral neuropathy and inform the use of an alternative to paclitaxel and/or the clinical management of this toxicity

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    No full text
    Abstract Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore