11 research outputs found

    Fair Algorithms for Hierarchical Agglomerative Clustering

    Full text link
    Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples. HAC algorithms are employed in many applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair -- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not discriminate against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. In this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. Through extensive experiments on multiple real-world UCI datasets, we show that our proposed algorithm finds fairer clusterings compared to vanilla HAC as well as other state-of-the-art fair clustering approaches

    Towards Robust and Fair Machine Learning

    No full text

    Towards Robust and Fair Machine Learning

    No full text

    Suspicion-Free Adversarial Attacks on Clustering Algorithms

    No full text
    Clustering algorithms are used in a large number of applications and play an important role in modern machine learning– yet, adversarial attacks on clustering algorithms seem to be broadly overlooked unlike supervised learning. In this paper, we seek to bridge this gap by proposing a black-box adversarial attack for clustering models for linearly separable clusters. Our attack works by perturbing a single sample close to the decision boundary, which leads to the misclustering of multiple unperturbed samples, named spill-over adversarial samples. We theoretically show the existence of such adversarial samples for the K-Means clustering. Our attack is especially strong as (1) we ensure the perturbed sample is not an outlier, hence not detectable, and (2) the exact metric used for clustering is not known to the attacker. We theoretically justify that the attack can indeed be successful without the knowledge of the true metric. We conclude by providing empirical results on a number of datasets, and clustering algorithms. To the best of our knowledge, this is the first work that generates spill-over adversarial samples without the knowledge of the true metric ensuring that the perturbed sample is not an outlier, and theoretically proves the above
    corecore