2,769 research outputs found
The complexity of theorem proving in circumscription and minimal entailment
We provide the first comprehensive proof-complexity analysis of different proof systems for propositional circumscription. In particular, we investigate two sequent-style calculi: MLK defined by Olivetti [28] and CIRC introduced by Bonatti and Olivetti [8], and the tableaux calculus NTAB suggested by Niemelä [26]. In our analysis we obtain exponential lower bounds for the proof size in NTAB and CIRC and show a polynomial simulation of CIRC by MLK. This yields a chain NTAB < CIRC < MLK of proof systems for circumscription of strictly increasing strength with respect to lengths of proofs
Essential Constraints of Edge-Constrained Proximity Graphs
Given a plane forest of points, we find the minimum
set of edges such that the edge-constrained minimum spanning
tree over the set of vertices and the set of constraints contains .
We present an -time algorithm that solves this problem. We
generalize this to other proximity graphs in the constraint setting, such as
the relative neighbourhood graph, Gabriel graph, -skeleton and Delaunay
triangulation. We present an algorithm that identifies the minimum set
of edges of a given plane graph such that for , where is the
constraint -skeleton over the set of vertices and the set of
constraints. The running time of our algorithm is , provided that the
constrained Delaunay triangulation of is given.Comment: 24 pages, 22 figures. A preliminary version of this paper appeared in
the Proceedings of 27th International Workshop, IWOCA 2016, Helsinki,
Finland. It was published by Springer in the Lecture Notes in Computer
Science (LNCS) serie
On unification of QBF resolution-based calculi
Several calculi for quantified Boolean formulas (QBFs) exist, but relations between them are not yet fully understood. This paper defines a novel calculus, which is resolution-based and enables unification of the principal existing resolution-based QBF calculi, namely Q-resolution, long-distance Q-resolution and the expansion-based calculus Exp+Res. All these calculi play an important role in QBF solving. This paper shows simulation results for the new calculus and some of its variants. Further, we demonstrate how to obtain winning strategies for the universal player from proofs in the calculus. We believe that this new proof system provides an underpinning necessary for formal analysis of modern QBF solvers. © 2014 Springer-Verlag Berlin Heidelberg
Are Short Proofs Narrow? QBF Resolution is not so Simple
The ground-breaking paper “Short Proofs Are Narrow -- Resolution Made Simple” by Ben-Sasson and Wigderson (J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds: to show a lower bound for the width of proofs. Another important measure for resolution is space, and in their fundamental work, Atserias and Dalmau (J. Comput. Syst. Sci. 2008) show that lower bounds for space again can be obtained via lower bounds for width. In this article, we assess whether similar techniques are effective for resolution calculi for quantified Boolean formulas (QBFs). There are a number of different QBF resolution calculi like Q-resolution (the classical extension of propositional resolution to QBF) and the more recent calculi ∀Exp+Res and IR-calc. For these systems, a mixed picture emerges. Our main results show that the relations both between size and width and between space and width drastically fail in Q-resolution, even in its weaker tree-like version. On the other hand, we obtain positive results for the expansion-based resolution systems ∀Exp+Res and IR-calc, however, only in the weak tree-like models. Technically, our negative results rely on showing width lower bounds together with simultaneous upper bounds for size and space. For our positive results, we exhibit space and width-preserving simulations between QBF resolution calculi
Feasible Interpolation for QBF Resolution Calculi
In sharp contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. In this paper we establish the feasible interpolation technique for all resolution-based QBF systems, whether modelling CDCL or expansion-based solving. This both provides the first general lower bound method for QBF proof systems as well as largely extends the scope of classical feasible interpolation. We apply our technique to obtain new exponential lower bounds to all resolution-based QBF systems for a new class of QBF formulas based on the clique problem. Finally, we show how feasible interpolation relates to the recently established lower bound method based on strategy extraction
Recommended from our members
A Galerkin boundary element method for high frequency scattering by convex polygons
In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains
Parallel Search with no Coordination
We consider a parallel version of a classical Bayesian search problem.
agents are looking for a treasure that is placed in one of the boxes indexed by
according to a known distribution . The aim is to minimize
the expected time until the first agent finds it. Searchers run in parallel
where at each time step each searcher can "peek" into a box. A basic family of
algorithms which are inherently robust is \emph{non-coordinating} algorithms.
Such algorithms act independently at each searcher, differing only by their
probabilistic choices. We are interested in the price incurred by employing
such algorithms when compared with the case of full coordination. We first show
that there exists a non-coordination algorithm, that knowing only the relative
likelihood of boxes according to , has expected running time of at most
, where is the expected running time of the best
fully coordinated algorithm. This result is obtained by applying a refined
version of the main algorithm suggested by Fraigniaud, Korman and Rodeh in
STOC'16, which was designed for the context of linear parallel search.We then
describe an optimal non-coordinating algorithm for the case where the
distribution is known. The running time of this algorithm is difficult to
analyse in general, but we calculate it for several examples. In the case where
is uniform over a finite set of boxes, then the algorithm just checks boxes
uniformly at random among all non-checked boxes and is essentially times
worse than the coordinating algorithm.We also show simple algorithms for Pareto
distributions over boxes. That is, in the case where for
, we suggest the following algorithm: at step choose uniformly
from the boxes unchecked in ,
where . It turns out this algorithm is asymptotically
optimal, and runs about times worse than the case of full coordination
Understanding Cutting Planes for QBFs
We define a cutting planes system CP+8red for quantified Boolean formulas (QBF) and analyse the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes is of intermediate strength between resolution and Frege, our findings here show that the situation in QBF is slightly more complex: while CP+8red is again weaker than QBF Frege and stronger than the CDCL-based QBF resolution systems Q-Res and QU-Res, it turns out to be incomparable to even the weakest expansion-based QBF resolution system 8Exp+Res. Technically, our results establish the effectiveness of two lower boun
Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition
A geometric graph is angle-monotone if every pair of vertices has a path
between them that---after some rotation---is - and -monotone.
Angle-monotone graphs are -spanners and they are increasing-chord
graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in
2014 and proved that Gabriel triangulations are angle-monotone graphs. We give
a polynomial time algorithm to recognize angle-monotone geometric graphs. We
prove that every point set has a plane geometric graph that is generalized
angle-monotone---specifically, we prove that the half--graph is
generalized angle-monotone. We give a local routing algorithm for Gabriel
triangulations that finds a path from any vertex to any vertex whose
length is within times the Euclidean distance from to .
Finally, we prove some lower bounds and limits on local routing algorithms on
Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Matching Points with Things
Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point-object pairs. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their number is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete
- …
