17,175 research outputs found

    Reverse k-Ranks Queries on Large Graphs

    Get PDF
    published_or_final_versio

    Re-parameterization Invariance in Fractional Flux Periodicity

    Full text link
    We analyze a common feature of a nontrivial fractional flux periodicity in two-dimensional systems. We demonstrate that an addition of fractional flux can be absorbed into re-parameterization of quantum numbers. For an exact fractional periodicity, all the electronic states undergo the re-parameterization, whereas for an approximate periodicity valid in a large system, only the states near the Fermi level are involved in the re-parameterization.Comment: 4 pages, 1 figure, minor changes, final version to appear in J. Phys. Soc. Jp

    Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers

    Get PDF
    Electron transport in GaAs/AlGaAs quantum cascade lasers operating in midinfrared is calculated self-consistently using an intersubband scattering model. Subband populations and carrier transition rates are calculated and all relevant electron-LO phonon and electron-electron scatterings between injector/collector, active region, and continuum resonance levels are included. The calculated carrier lifetimes and subband populations are then used to evaluate scattering current densities, injection efficiencies, and carrier backflow into the active region for a range of operating temperatures. From the calculated modal gain versus total current density dependencies the output characteristics, in particular the gain coefficient and threshold current, are extracted. For the original GaAs/Al0.33Ga0.67As quantum cascade structure [C. Sirtori , Appl. Phys. Lett. 73, 3486 (1998)] these are found to be g=11.3 cm/kA and J(th)=6+/-1 kA/cm(2) (at T=77 K), and g=7.9 cm/kA and J(th)=10+/-1 kA/cm(2) (at T=200 K), in good agreement with the experiment. Calculations shows that threshold cannot be achieved in this structure at T=300 K, due to the small gain coefficient and the gain saturation effect, also in agreement with experimental findings. The model thus promises to be a powerful tool for the prediction and optimization of new, improved quantum cascade structures. © 2002 American Institute of Physics

    Serendipitous discovery of an extended X-ray jet without a radio counterpart in a high-redshift quasar

    Full text link
    A recent Chandra observation of the nearby galaxy cluster Abell 585 has led to the discovery of an extended X-ray jet associated with the high-redshift background quasar B3 0727+409, a luminous radio source at redshift z=2.5. This is one of only few examples of high-redshift X-ray jets known to date. It has a clear extension of about 12", corresponding to a projected length of ~100 kpc, with a possible hot spot located 35" from the quasar. The archival high resolution VLA maps surprisingly reveal no extended jet emission, except for one knot about 1.4" from the quasar. The high X-ray to radio luminosity ratio for this source appears consistent with the (1+z)4\propto (1+z)^{4} amplification expected from the inverse Compton radiative model. This serendipitous discovery may signal the existence of an entire population of similar systems with bright X-ray and faint radio jets at high redshift, a selection bias which must be accounted for when drawing any conclusions about the redshift evolution of jet properties and indeed about the cosmological evolution of supermassive black holes and active galactic nuclei in general

    Controlled Quantum Secret Sharing

    Full text link
    We present a new protocol in which a secret multiqubit quantum state Ψ\ket{\Psi} is shared by nn players and mm controllers, where Ψ\ket{\Psi} is the encoding state of a quantum secret sharing scheme. The players may be considered as field agents responsible for carrying out a task, using the secret information encrypted in Ψ\ket{\Psi}, while the controllers are superiors who decide if and when the task should be carried out and who to do it. Our protocol only requires ancillary Bell states and Bell-basis measurements.Comment: 6 pages, 0 figure, RevTeX4; published version with minor change

    How Unsplittable-Flow-Covering helps Scheduling with Job-Dependent Cost Functions

    Full text link
    Generalizing many well-known and natural scheduling problems, scheduling with job-specific cost functions has gained a lot of attention recently. In this setting, each job incurs a cost depending on its completion time, given by a private cost function, and one seeks to schedule the jobs to minimize the total sum of these costs. The framework captures many important scheduling objectives such as weighted flow time or weighted tardiness. Still, the general case as well as the mentioned special cases are far from being very well understood yet, even for only one machine. Aiming for better general understanding of this problem, in this paper we focus on the case of uniform job release dates on one machine for which the state of the art is a 4-approximation algorithm. This is true even for a special case that is equivalent to the covering version of the well-studied and prominent unsplittable flow on a path problem, which is interesting in its own right. For that covering problem, we present a quasi-polynomial time (1+ϵ)(1+\epsilon)-approximation algorithm that yields an (e+ϵ)(e+\epsilon)-approximation for the above scheduling problem. Moreover, for the latter we devise the best possible resource augmentation result regarding speed: a polynomial time algorithm which computes a solution with \emph{optimal }cost at 1+ϵ1+\epsilon speedup. Finally, we present an elegant QPTAS for the special case where the cost functions of the jobs fall into at most logn\log n many classes. This algorithm allows the jobs even to have up to logn\log n many distinct release dates.Comment: 2 pages, 1 figur

    Are Asians comfortable with discussing death in health valuation studies? A study in multi-ethnic Singapore

    Get PDF
    BACKGROUND To characterize ease in discussing death (EID) and its influence on health valuation in a multi-ethnic Asian population and to determine the acceptability of various descriptors of death and "pits"/"all-worst" in health valuation. METHODS In-depth interviews (English or mother-tongue) among adult Chinese, Malay and Indian Singaporeans selected to represent both genders and a wide range of ages/educational levels. Subjects rated using 0–10 visual analogue scales (VAS): (1) EID, (2) acceptability of 8 descriptors for death, and (3) appropriateness of "pits" and "all-worst" as descriptors for the worst possible health state. Subjects also valued 3 health states using VAS followed by time trade-off (TTO). The influence of sociocultural variables on EID and these descriptors was studied using univariable analyses and multiple linear regression (MLR). The influence of EID on VAS/TTO utilities with adjustment for sociocultural variables was assessed using MLR. RESULTS Subjects (n = 63, 35% Chinese, 32% Malay, median age 44 years) were generally comfortable with discussing death (median EID: 8.0). Only education significantly influenced EID (p = 0.045). EID correlated weakly with VAS/TTO scores (range: VAS: -0.23 to 0.07; TTO: -0.14 to 0.11). All subjects felt "passed away", "departed" and "deceased" were most acceptable (median acceptability: 8.0) while "sudden death" and "immediate death" were least acceptable (median acceptability: 5.0). Subjects clearly preferred "all-worst" to "pits" (63% vs. 19%, p < 0.001). CONCLUSION Singaporeans were generally comfortable with discussing death and had clear preferences for several descriptors of death and for "all-worst". EID is unlikely to influence health preference measurement in health valuation studies

    Chaotic to ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas

    Get PDF
    Transition from chaotic to ordered state has been observed during the initial stage of a discharge in a cylindrical dc glow discharge plasma. Initially it shows a chaotic behavior but increasing the discharge voltage changes the characteristics of the discharge glow and shows a period substraction of order 7 period \to 5 period \to3 period \to1 period i.e. the system goes to single mode through odd cycle subtraction. On further increasing the discharge voltage, the system goes through period doubling, like 1 period \to 2 period \to 4 period. On further increasing the voltage, the system goes to stable state without having any oscillations.Comment: chathode-sheath, instabilities, chaos, period-subtraction, bifurcation, dc-discharg
    corecore