31,545 research outputs found
A model for the formation of the active region corona driven by magnetic flux emergence
We present the first model that couples the formation of the corona of a
solar active region to a model of the emergence of a sunspot pair. This allows
us to study when, where, and why active region loops form, and how they evolve.
We use a 3D radiation MHD simulation of the emergence of an active region
through the upper convection zone and the photosphere as a lower boundary for a
3D MHD coronal model. The latter accounts for the braiding of the magnetic
fieldlines, which induces currents in the corona heating up the plasma. We
synthesize the coronal emission for a direct comparison to observations.
Starting with a basically field-free atmosphere we follow the filling of the
corona with magnetic field and plasma. Numerous individually identifiable hot
coronal loops form, and reach temperatures well above 1 MK with densities
comparable to observations. The footpoints of these loops are found where small
patches of magnetic flux concentrations move into the sunspots. The loop
formation is triggered by an increase of upwards-directed Poynting flux at
their footpoints in the photosphere. In the synthesized EUV emission these
loops develop within a few minutes. The first EUV loop appears as a thin tube,
then rises and expands significantly in the horizontal direction. Later, the
spatially inhomogeneous heat input leads to a fragmented system of multiple
loops or strands in a growing envelope.Comment: 13 pages, 10 figures, accepted to publication in A&
Magnetic Jam in the Corona of the Sun
The outer solar atmosphere, the corona, contains plasma at temperatures of
more than a million K, more than 100 times hotter that solar surface. How this
gas is heated is a fundamental question tightly interwoven with the structure
of the magnetic field in the upper atmosphere. Conducting numerical experiments
based on magnetohydrodynamics we account for both the evolving
three-dimensional structure of the atmosphere and the complex interaction of
magnetic field and plasma. Together this defines the formation and evolution of
coronal loops, the basic building block prominently seen in X-rays and extreme
ultraviolet (EUV) images. The structures seen as coronal loops in the EUV can
evolve quite differently from the magnetic field. While the magnetic field
continuously expands as new magnetic flux emerges through the solar surface,
the plasma gets heated on successively emerging fieldlines creating an EUV loop
that remains roughly at the same place. For each snapshot the EUV images
outline the magnetic field, but in contrast to the traditional view, the
temporal evolution of the magnetic field and the EUV loops can be different.
Through this we show that the thermal and the magnetic evolution in the outer
atmosphere of a cool star has to be treated together, and cannot be simply
separated as done mostly so far.Comment: Final version published online on 27 April 2015, Nature Physics 12
pages and 8 figure
Form Factors Calculated on the Light-Front
A consistent treatment of decay is given on the
light-front. The to transition form factors are calculated in the
entire physical range of momentum transfer for the first time. The
valence-quark contribution is obtained using relativistic light-front wave
functions. Higher quark-antiquark Fock-state of the -meson bound state is
represented effectively by the configuration, and its effect
is calculated in the chiral perturbation theory. Wave function renormalization
is taken into account consistently. The contribution dominates
near the zero-recoil point ( GeV), and decreases rapidly as
the recoil momentum increases. We find that the calculated form factor
follows approximately a dipole -dependence in the entire range
of momentum transfer.Comment: Revtex, 19 pages, 9 figure
Detection of Optical Synchrotron Emission from the Radio Jet of 3C279
We report the detection of optical and ultraviolet emission from the
kiloparsec scale jet of the well-known quasar 3C~279. A bright knot, discovered
in archival V and U band {\it Hubble Space Telescope} Faint Object Camera
images, is coincident with a peak in the radio jet \sim0.6\arcsec from the
nucleus. The detection was also confirmed in Wide Field Planetary Camera-2
images. Archival Very Large Array and MERLIN radio data are also analyzed which
help to show that the high-energy optical/UV continuum, and spectrum, are
consistent with a synchrotron origin from the same population of relativistic
electrons responsible for the radio emission.Comment: 6 pages, 3 figs. accepted for publication in ApJL with minor
revision
Long decoding runs for Galileo's convolutional codes
Decoding results are described for long decoding runs of Galileo's convolutional codes. A 1 k-bit/sec hardware Viterbi decoder is used for the (15, 1/4) convolutional code, and a software Viterbi decoder is used for the (7, 1/2) convolutional code. The output data of these long runs are stored in data files using a data compression format which can reduce file size by a factor of 100 to 1 typically. These data files can be used to replicate the long, time-consuming runs exactly and are useful to anyone who wants to analyze the burst statistics of the Viterbi decoders. The 1 k-bit/sec hardware Viterbi decoder was developed in order to demonstrate the correctness of certain algorithmic concepts for decoding Galileo's experimental (15, 1/4) code, and for the long-constraint-length codes in general. The hardware decoder can be used both to search for good codes and to measure accurately the performance of known codes
Electron Energy Distributions at Relativistic Shock Sites: Observational Constraints from the Cygnus A Hotspots
We report new detections of the hotspots in Cygnus A at 4.5 and 8.0 microns
with the Spitzer Space Telescope. Together with detailed published radio
observations and synchrotron self-Compton modeling of previous X-ray
detections, we reconstruct the underlying electron energy spectra of the two
brightest hotspots (A and D). The low-energy portion of the electron
distributions have flat power-law slopes (s~1.5) up to the break energy which
corresponds almost exactly to the mass ratio between protons and electrons; we
argue that these features are most likely intrinsic rather than due to
absorption effects. Beyond the break, the electron spectra continue to higher
energies with very steep slopes s>3. Thus, there is no evidence for the
`canonical' s=2 slope expected in 1st order Fermi-type shocks within the whole
observable electron energy range. We discuss the significance of these
observations and the insight offered into high-energy particle acceleration
processes in mildly relativistic shocks.Comment: 5 pages, 3 figures, in Extragalactic Jets: Theory and Observation
from Radio to Gamma Ray, Eds. T. A. Rector and D. S. De Youn
- …