
N89 - 203 4 2
TDA Progress Report 42-95 July-September 1988

Long Decoding Runs for Galileo’s Convolutional Codes
C. R. Lahmeyer and K.-M. Cheung

Communication Systems Research Section

Decoding results are described for long decoding runs of Galileo ’s convolutional codes.
A 1-kbitlsec hardware Viterbi decoder is used for the (15, 1/41 convolutional code, and
a software Viterbi decoder is used for the (7, 112) convolutional code. The output data of
these long runs are stored in data files using a novel data compression format which can
reduce file sue by a factor of 100 to 1 typically. These data files can be used to replicate
the long, time-consuming runs exactly and are useful to anyone who wants to analyze the
burst statistics of the Viterbi decoders. The 1-kbitlsec hardware Viterbi decoder has been
developed in order to demonstrate the correctness of certain algorithmic concepts for
decoding Galileo ’s experimental (15, 1/41 code, and for long-constraint-length codes in
general. The hardware decoder can be used both to search for good codes and to measure
accurately the performance of known codes.

1. Introduction
Many long decoding runs of 5 to 40 Mbits have been per-

formed for Galileo’s experimental (15, 1/4) convolutional
code and Galileo’s standard (7, 1/2) convolutional code. A
1-kbit/sec hardware Viterbi decoder’ is used for the (15, 1/4)
convolutional code, and a software Viterbi decoder on the
RTOP71 Sun-3/260 computer is used for the (7, 1/2) convo-
lutional code. The output data from these long runs are stored
in data files using a novel data compression scheme of retain-
ing only the decoded ones and storing them in hexadecimal
form. With this format a typical output compression of 100 to
1 is achieved. These data files can be used to replicate the
long, time-consuming runs exactly and are useful to anyone
who wants to analyze the burst statistics of the Viterbi
decoders.

‘C. R. Lahmeyer, “The 1 Kilobit per Second Viterbi Decoder,” Inter-
office Memorandum 331-88.3-042, Jet Propulsion Laboratory, Pasa-
dena, California, August 19, 1988.

A 1-kbit/sec hardware Viterbi decoder was developed in
the past few months in order to demonstrate the correctness
of certain algorithmic concepts in the decoding of long-
constraint-length convolutional codes. At present this decoder
is designed to decode any convolutional code of constraint
length 15 and with code rate l/n as low as 1/6. Most of the
recent test runs have used the (15,1/4) convolutional code that
the Galileo project has selected [l] . It has the following
generator polynomials:

46321 = 100110011 010001

51271 = 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1

63667 = 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1
70535 = 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1

Since the fast hardware Viterbi decoder is at present con-
figured to decode convolutional codes of constraint length
15 only, a software Viterbi decoder was developed in the
RTOP71 Sun computer to perform long decoding runs for

143

https://ntrs.nasa.gov/search.jsp?R=19890010971 2020-03-20T03:52:35+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42828831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Galileo’s standard (7, 1/2) convolutional code. The standard
code has the following generator polynomials:

133 = 1 0 1 1 011
I 171 = 1 1 1 1 0 0 1

The initial motives for performing the long decoding runs
were to facilitate the study of the proper interleaving depth
for the Reed-Solomon code used by Galileo, and to develop
theoretical models (e.g., the geometric burst model [2]) for
the decoded output of the Viterbi decoder, from which
concatenated code performance can be accurately estimated
without directly simulating the entire concatenated system.
These decoding run outputs represent a data base useful to
anyone studying the burst nature of the output error patterns
of the Viterbi decoders.

II. Description of Test Setup of the
Hardware Decoder

While the (7, 1/2) convolutional code is decoded entirely
in software, the long decoding runs for the (1 5, 1/4) convolu-
tional code require the use of the above-mentioned hardware
decoder in combination with software. The test configuration
used for the decoding runs is shown in Fig. 1. The hardware
decoder interfaces with a PC-compatible computer. Software
in the PC generates the test data and transmits it to the hard-
ware decoder, where the most computationally intensive part
of the decoding, called metric computation, is performed.
The PC then performs the part of the decoding process called
traceback, in order to complete the decoding. The PC then
condenses the decoded bits into the compressed form and
archives the results to hard disk.

The generation of the source data is performed by a soft-
ware noise generation routine in the PC. Gaussian noise sym-
bols are generated in software at a user-selectable noise level.
The noise symbols are quantized to 8-bit sign-magnitude
representation. The information content of this data is assumed
to be all zeros; thus, any nonzero decoded bits represent
decoding errors. This is the usual convention when running
the decoder to test code performance, and it is theoretically
justified because the code is linear and because it has been
shown that the decoder does not favor zeros in any way.

111. Data Representation Scheme
A typical method of representing decoded output is to

print ASCII 1’s and 0’s for all the decoded bits, but such an
approach would produce a 5-Mbyte DOS file for a 5-Mbit
decoding run. Therefore a compact representation scheme was
developed which preserves all of the information about the
decoder output but reduces file size by a factor of 100 to 1
typically. This scheme relies on the fact that the information

content is all O’s, and thus the vast majority of the decoded
bits will be O’s, with only a few 1’s representing decoding
errors. Using a scheme somewhat like spacecraft image com-
pression, only the “changes,” or in this case the error bursts,
are printed. These are represented in hexadecimal notation.

Figure 2 is a sample printout of a decoding run at a 0.45-dB
signal-to-noise ratio (E#,). The first column is a decimal
representation of the number of bits between the start of this
burst and the start of the previous one. The first burst started
at bit number 0 and the second burst starts 381 bits later.
Following this is a hexadecimal representation of the error
burst itself. For example, 9100 represents a burst of three
error bits given as 1001000100000000 in binary. The defini-
tion of the end of a burst is a string of at least 16 bits which
are all 0’s. Four 0’s are printed at the end of each burst to act
as a delimiter between bursts and to signify the 16 zero bits.
This definition is somewhat loose in that some of the last
bits of the printed burst can also be O’s, but no information
is lost in any case. All decoding errors will ultimately be
listed once each. The line with -1 signifies the end of the
decoding run. Thereafter follow some statistics about the
entire run. Most are self-explanatory, with Pb representing
the bit error rate and Ps signifying the symbol error rate,
i.e., the fraction of Reed-Solomon symbols (8 decoded bits)
that are corrupted. The size of the entire file “bursts.45” is
46 kbytes.

Table 1 lists all the files accumulated so far for the Galileo
code given above. Represented here are several runs of 5 Mbits
and a few at 20 Mbits or more. The filename indicates the
noise level used in that run, e g , “bursts.45” signifies a run
With Eb/No = 0.45 dB.

Table 2 lists files recently generated by software decoding
of the NASA standard (7, 1/2) code used by Voyager, Galileo,
and other missions. In the filename, “7” signifies the con-
straint length and the next digits give the noise level. For
example, “nburst7.1.4” signifies a run with the (7, 1/2) code
at Eb/No = 1.4 dB.

IV. Conclusions
A library of decoded output data from long decoding runs

of Galileo’s convolutional codes has been started. Some early
runs in this collection are listed here, and it is anticipated that
many more runs with different codes and sample sizes will be
performed in the future. Any of the files referenced in Tables
1 and 2 can be made available to interested users on request.
Useful applications of this work have already been obtained in
the study of how the experimental Galileo convolutional code
performs when concatenated with the 8-bit (255, 223) Reed-
Solomon code [3].

144

References

[11 S. Dolinar, “A New Code for Galileo,” TDA Progress Report 42-93, vol. January-
March 1988, Jet Propulsion Laboratory, Pasadena, California, pp. 83-96, May 15,
1988.

[2] R. Miller, L. Deutsch, and S . Butman, On the Error Statistics of Viterbi Decoding
and the Performance of Concatenated Codes, JPL Publication 81-9, September 1 ,
1981.

[3] K. Cheung and S. Dolinar, “Performance of Galileo’s Concatenated Codes with
Nonideal Interleaving,” TDA Progress Report 42-95, this issue.

145

Table 1. Decoding runs to date with the (15, 114)
convolutional code

Filename Total bits decoded

bursts.O
bursts.12
bursts.22
bursts.3
bursts.32
bursts.42
bursts.45
bursts.5
bursts5
bursts.7

5 Mbits
5 Mbits
5 Mbits

600 kbits
5 Mbits
5 Mbits
5 Mbits

22 Mbits
20 Mbits
40 Mbits

Table 2. Software decoding runs for the (7, 1/2)
convolutional code

Filename Total bits decoded

nburst 7.1.4
nburst7.1.45
nburst7.1.5
nburst7.1.55
nburst7.1.6
n burst7.1.6 5
nburst7.1.7
nburst7.1.75
nburst7.1.8
nburst7.1.85
nburst7.1.9
nburst7.2.0

10 Mbits
5 Mbits
5 Mbits

10 Mbits
5 Mbits

10 Mbits
5 Mbits

10 Mbits
5 Mbits

10 Mbits
40 Mbits
40 Mbits

146

PC-COMPATI B LE
COMPUTER

1 -kbit/sec
VlTERBl DECODER

Fig. 1. Configuration for decoding with
1-kbitkec Viterbi decoder.

0 9100
381 81aa

11796 bd3f
4643 ef3b
1490 f371
4531 8afa
4946 a e f 8
1898 819f
9206 ab62

612 d38e
2621 f4ed
1556 f5c6

0000
5cOb 3a46 8000 0000
609a ldOO 0000
fd68 0000
dOOO 0000
5eef 03ec 8000 0000
3b8e 4400 0000
e4fa 8c13 5d4c eb2O 0000
6221 18f9 f400 0000
8000 0000
e3a0 0000
l C O 0 0000

5176
1467
6557
6786

185
4962

172
2469
1395
3468
3715
1379
69 1
405
-1

clOb dcff i f 1 4 f258 Oab9 557b 0341 0000
b630 0000
f99e 3a00 0000
81b7 843f 086b e3a0 0000
cl00 d9b0 4618 0000
Sa00 0000
coo0 0000
adb2 b389 ld64 e000 0000
850d Se96 e755 l2Sb 04fd cec4 9800 0000
e800 0000
c727 2720 0000
8800 0000
9302 a64f 6 c O O 0000
cc64 clcc 4b21 f515 b2OO 0000

5000040 Total bit. decoded
1560 Total bure t r d e t e c t e d

b i t r 5 5000040 b i t e r r s = 30964 Pb = 3.4250-003
s y r e = 625005 aynerre = 8732 Pa = 8.343e-003
ea tura t ion valuer = 0

Data recorded a t Eb/No = 0.45 db

Fig. 2. Sample decoding run output (from file “bursts.45”).

147

