25,866 research outputs found

    Electron Energy Distributions at Relativistic Shock Sites: Observational Constraints from the Cygnus A Hotspots

    Full text link
    We report new detections of the hotspots in Cygnus A at 4.5 and 8.0 microns with the Spitzer Space Telescope. Together with detailed published radio observations and synchrotron self-Compton modeling of previous X-ray detections, we reconstruct the underlying electron energy spectra of the two brightest hotspots (A and D). The low-energy portion of the electron distributions have flat power-law slopes (s~1.5) up to the break energy which corresponds almost exactly to the mass ratio between protons and electrons; we argue that these features are most likely intrinsic rather than due to absorption effects. Beyond the break, the electron spectra continue to higher energies with very steep slopes s>3. Thus, there is no evidence for the `canonical' s=2 slope expected in 1st order Fermi-type shocks within the whole observable electron energy range. We discuss the significance of these observations and the insight offered into high-energy particle acceleration processes in mildly relativistic shocks.Comment: 5 pages, 3 figures, in Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, Eds. T. A. Rector and D. S. De Youn

    Cutout reinforcements for shear loaded laminate and sandwich composite panels

    Get PDF
    This paper presents the numerical and experimental studies of shear loaded laminated and sandwich carbon/epoxy composite panels with cutouts and reinforcements aiming at reducing the cutout stress concentration and increasing the buckling stability of the panels. The effect of different cutout sizes and the design and materials of cutout reinforcements on the stress and buckling behaviour of the panels are evaluated. For the sandwich panels with a range of cutout size and a constant weight, an optimal ratio of the core to the face thickness has been studied for the maximum buckling stability. The finite element method and an analytical method are employed to perform parametric studies. In both constant stress and constant displacement shear loading conditions, the results are in very good agreement with those obtained from experiment for selected cutout reinforcement cases. Conclusions are drawn on the cutout reinforcement design and improvement of stress concentration and buckling behaviour of shear loaded laminated and sandwich composite panels with cutouts

    Deep optical imaging of AGB circumstellar envelopes

    Full text link
    We report results of a program to image the extended circumstellar envelopes of asymptotic giant branch (AGB) stars in dust-scattered Galactic light. The goal is to characterize the shapes of the envelopes to probe the mass-loss geometry and the presence of hidden binary companions. The observations consist of deep optical imaging of 22 AGB stars with high mass loss rates: 16 with the ESO 3.5 m NTT telescope, and the remainder with other telescopes. The circumstellar envelopes are detected in 15 objects, with mass loss rates > 2E-6 Msun/year. The surface brightness of the envelopes shows a strong decrease with Galactic radius, which indicates a steep radial gradient in the interstellar radiation field. The envelopes range from circular to elliptical in shape, and we characterize them by the ellipticity (E = major/minor axis) of iso-intensity contours. We find that about 50 percent of the envelopes are close to circular with E 1.2. We interpret the shapes in terms of populations of single stars and binaries whose envelopes are flattened by a companion. The distribution of E is qualitatively consistent with expectations based on population synthesis models of binary AGB stars. We also find that about 50 percent of the sample exhibit small-scale, elongated features in the central regions. We interpret these as the escape of light from the central star through polar holes, which are also likely produced by companions. Our observations of envelope flattening and polar holes point to a hidden population of companions within the circumstellar envelopes of AGB stars. These companions are expected to play an important role in the transition to post-AGB stars and the formation of planetary nebulae.Comment: 19 pages, 13 figures, color pictures in Appendix, accepted by A&

    A kpc-scale X-ray jet in the BL Lac source S5 2007+777

    Get PDF
    X-ray jets in AGN are commonly observed in FRII and FRI radio-galaxies, but rarely in BL Lacs, most probably due to their orientation close to the line of sight and the ensuing foreshortening effects. Only three BL Lacs are known so far to contain a kpc-scale X-ray jet. In this paper, we present the evidence for the existence of a fourth extended X-ray jet in the classical radio-selected source S5 2007+777, which for its hybrid FRI/II radio morphology has been classified as a HYMOR (HYbrid MOrphology Radio source). Our Chandra ACIS-S observations of this source revealed an X-ray counterpart to the 19"-long radio jet. Interestingly, the X-ray properties of the kpc-scale jet in S5 2007+777 are very similar to those observed in FRII jets. First, the X-ray morphology closely mirrors the radio one, with the X-rays being concentrated in the discrete radio knots. Second, the X-ray continuum of the jet/brightest knot is described by a very hard power law, with photon index Gamma_x~1, although the uncertainties are large. Third, the optical upper limit from archival HST data implies a concave radio-to-X-ray SED. If the X-ray emission is attributed to IC/CMB with equipartition, strong beaming (delta=13) is required, implying a very large scale (Mpc) jet. The beaming requirement can be somewhat relaxed assuming a magnetic field lower than equipartition. Alternatively, synchrotron emission from a second population of very high-energy electrons is viable. Comparison to other HYMOR jets detected with Chandra is discussed, as well as general implications for the origin of the FRI/II division.Comment: Accepted for publication in ApJ, 19 pages, 3 figure

    A simplified model of the source channel of the Leksell Gamma Knife(R)^(R): testing multisource configurations with PENELOPE

    Full text link
    A simplification of the source channel geometry of the Leksell Gamma Knife®^{\circledR}, recently proposed by the authors and checked for a single source configuration (Al-Dweri et al 2004), has been used to calculate the dose distributions along the xx, yy and zz axes in a water phantom with a diameter of 160~mm, for different configurations of the Gamma Knife including 201, 150 and 102 unplugged sources. The code PENELOPE (v. 2001) has been used to perform the Monte Carlo simulations. In addition, the output factors for the 14, 8 and 4~mm helmets have been calculated. The results found for the dose profiles show a qualitatively good agreement with previous ones obtained with EGS4 and PENELOPE (v. 2000) codes and with the predictions of GammaPlan®^{\circledR}. The output factors obtained with our model agree within the statistical uncertainties with those calculated with the same Monte Carlo codes and with those measured with different techniques. Owing to the accuracy of the results obtained and to the reduction in the computational time with respect to full geometry simulations (larger than a factor 15), this simplified model opens the possibility to use Monte Carlo tools for planning purposes in the Gamma Knife®^{\circledR}.Comment: 13 pages, 8 figures, 5 table

    Using molecular mechanics to predict bulk material properties of fibronectin fibers

    Get PDF
    The structural proteins of the extracellular matrix (ECM) form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn) and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional network models

    X-ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    Full text link
    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the spectral energy distribution (SED) of GPS sources with their expansion, predicting significant and complex high-energy emission, from the X-ray to the gamma-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N_H) and radio (N_HI) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.Comment: 29 pages, 3 figures, 6 tables; to appear in ApJ. A few clarifications included, according to referee's suggestion
    • …
    corecore