9 research outputs found

    Development and evaluation of novel-trans-buccoadhesive films of Famotidine

    No full text
    The present investigation highlights the novel trans-buccoadhesive films of Famotidine, an H2 receptor antagonist used as an anti-ulcerative agent. The buccal films were fabricated by solvent casting technique with different polymer combinations of hydroxypropyl methylcellulose, carbopol-934P and polyvinyl pyrrolidone. Drug–polymer interaction studies by Fourier transform infrared spectroscopy show that there is no significant interaction between drug and polymers. The fabricated films were evaluated for their physicochemical characters like weight, thickness, surface pH, percentage moisture absorption, percentage moisture loss, swelling percentage, folding endurance, water vapor transmission and drug content. Stability study of buccal films was performed in natural human saliva. Ex vivo permeation studies were conducted using fresh sheep buccal mucosa and buccoadhesive strength was calculated by modified balance method and showed sufficient strength in all the formulations. Good correlation was observed between the in vitro drug release and in vivo drug release, with a correlation coefficient of 0.995. Drug diffusion from buccal films showed apparently zero order kinetics and release mechanism was diffusion controlled after considerable swelling

    Development, characterization & invivo evaluation of proniosomal based transdermal delivery system of Atenolol

    No full text
    The potential of proniosomes as a transdermal drug delivery system for Atenolol was investigated by encapsulating the drug in various formulations of proniosomal gel composed of various ratios of sorbitan fatty acid esters, cholesterol, lecithin prepared by Coacervation-phase separation method. The objectives of the present study were to define effects on the antihypertension activity and pharmacokinetics of a novel transdermal Proniosomal gel incorporating Atenolol. The formulated systems were characterized in vitro for size, drug entrapment, In vitro and in vivo drug permeation profiles and vesicular stability at different storage conditions. The optimized Atenolol proniosomes (AT8) showed nanometric vesicle size, high entrapment efficiency and marked enhancement in transdermal permeation. The prepared Proniosomal gel showed the relative bioavailability of 365.38 fold increased for AT8 than oral. The maximal concentrations (Cmax), of drug were significantly reduced while the areas under the plasma concentration–time curve (AUC), and mean residence times (MRT), t1/2 were evidently increased and extended, respectively. The results suggest that proniosomes can act as promising carrier which offers an alternative approach for transdermal delivery of Atenolol. Keywords: Proniosomes, Atenolol, Niosomes, Pharmacokinetic study, Transdermal deliver
    corecore