108 research outputs found

    Fluctuations relations for semiclassical single-mode laser

    Full text link
    Over last decades, the study of laser fluctuations has shown that laser theory may be regarded as a prototypical example of a nonlinear nonequilibrium problem. The present paper discusses the fluctuation relations, recently derived in nonequilibrium statistical mechanics, in the context of the semiclassical laser theory.Comment: 11 pages, 3 figure

    Fluctuation-Dissipation Theorem in Nonequilibrium Steady States

    Full text link
    In equilibrium, the fluctuation-dissipation theorem (FDT) expresses the response of an observable to a small perturbation by a correlation function of this variable with another one that is conjugate to the perturbation with respect to \emph{energy}. For a nonequilibrium steady state (NESS), the corresponding FDT is shown to involve in the correlation function a variable that is conjugate with respect to \emph{entropy}. By splitting up entropy production into one of the system and one of the medium, it is shown that for systems with a genuine equilibrium state the FDT of the NESS differs from its equilibrium form by an additive term involving \emph{total} entropy production. A related variant of the FDT not requiring explicit knowledge of the stationary state is particularly useful for coupled Langevin systems. The \emph{a priori} surprising freedom apparently involved in different forms of the FDT in a NESS is clarified.Comment: 6 pages; EPL, in pres

    Level 2.5 large deviations for continuous time Markov chains with time periodic rates

    Full text link
    We consider an irreducible continuous time Markov chain on a finite state space and with time periodic jump rates and prove the joint large deviation principle for the empirical measure and flow and the joint large deviation principle for the empirical measure and current. By contraction we get the large deviation principle of three types of entropy production flow. We derive some Gallavotti-Cohen duality relations and discuss some applications.Comment: 37 pages. corrected versio

    Modified Fluctuation-dissipation theorem for non-equilibrium steady-states and applications to molecular motors

    Get PDF
    We present a theoretical framework to understand a modified fluctuation-dissipation theorem valid for systems close to non-equilibrium steady-states and obeying markovian dynamics. We discuss the interpretation of this result in terms of trajectory entropy excess. The framework is illustrated on a simple pedagogical example of a molecular motor. We also derive in this context generalized Green-Kubo relations similar to the ones derived recently by Seifert., Phys. Rev. Lett., 104, 138101 (2010) for more general networks of biomolecular states.Comment: 6 pages, 2 figures, submitted in EP

    Finite sampling effects on generalized fluctuation-dissipation relations for steady states

    Get PDF
    We study the effects of the finite number of experimental data on the computation of a generalized fluctuation-dissipation relation around a nonequilibrium steady state of a Brownian particle in a toroidal optical trap. We show that the finite sampling has two different effects, which can give rise to a poor estimate of the linear response function. The first concerns the accessibility of the generalized fluctuation-dissipation relation due to the finite number of actual perturbations imposed to the control parameter. The second concerns the propagation of the error made at the initial sampling of the external perturbation of the system. This can be highly enhanced by introducing an estimator which corrects the error of the initial sampled condition. When these two effects are taken into account in the data analysis, the generalized fluctuation-dissipation relation is verified experimentally

    Fluctuations and response in a non-equilibrium micron-sized system

    Get PDF
    The linear response of non-equilibrium systems with Markovian dynamics satisfies a generalized fluctuation-dissipation relation derived from time symmetry and antisymmetry properties of the fluctuations. The relation involves the sum of two correlation functions of the observable of interest: one with the entropy excess and the second with the excess of dynamical activity with respect to the unperturbed process, without recourse to anything but the dynamics of the system. We illustrate this approach in the experimental determination of the linear response of the potential energy of a Brownian particle in a toroidal optical trap. The overdamped particle motion is effectively confined to a circle, undergoing a periodic potential and driven out of equilibrium by a non-conservative force. Independent direct and indirect measurements of the linear response around a non-equilibrium steady state are performed in this simple experimental system. The same ideas are applicable to the measurement of the response of more general non-equilibrium micron-sized systems immersed in Newtonian fluids either in stationary or non-stationary states and possibly including inertial degrees of freedom.Comment: 12 pages, submitted to J. Stat. Mech., revised versio

    Probing active forces via a fluctuation-dissipation relation: Application to living cells

    Get PDF
    We derive a new fluctuation-dissipation relation for non-equilibrium systems with long-term memory. We show how this relation allows one to access new experimental information regarding active forces in living cells that cannot otherwise be accessed. For a silica bead attached to the wall of a living cell, we identify a crossover time between thermally controlled fluctuations and those produced by the active forces. We show that the probe position is eventually slaved to the underlying random drive produced by the so-called active forces.Comment: 5 page

    Entropy production and fluctuation relations for a KPZ interface

    Full text link
    We study entropy production and fluctuation relations in the restricted solid-on-solid growth model, which is a microscopic realization of the KPZ equation. Solving the one dimensional model exactly on a particular line of the phase diagram we demonstrate that entropy production quantifies the distance from equilibrium. Moreover, as an example of a physically relevant current different from the entropy, we study the symmetry of the large deviation function associated with the interface height. In a special case of a system of length L=4 we find that the probability distribution of the variation of height has a symmetric large deviation function, displaying a symmetry different from the Gallavotti-Cohen symmetry.Comment: 21 pages, 5 figure

    Linear response theory and transient fluctuation theorems for diffusion processes: a backward point of view

    Full text link
    On the basis of perturbed Kolmogorov backward equations and path integral representation, we unify the derivations of the linear response theory and transient fluctuation theorems for continuous diffusion processes from a backward point of view. We find that a variety of transient fluctuation theorems could be interpreted as a consequence of a generalized Chapman-Kolmogorov equation, which intrinsically arises from the Markovian characteristic of diffusion processes

    The fluctuation-dissipation relation: how does one compare correlation functions and responses?

    Full text link
    We discuss the well known Einstein and the Kubo Fluctuation Dissipation Relations (FDRs) in the wider framework of a generalized FDR for systems with a stationary probability distribution. A multi-variate linear Langevin model, which includes dynamics with memory, is used as a treatable example to show how the usual relations are recovered only in particular cases. This study brings to the fore the ambiguities of a check of the FDR done without knowing the significant degrees of freedom and their coupling. An analogous scenario emerges in the dynamics of diluted shaken granular media. There, the correlation between position and velocity of particles, due to spatial inhomogeneities, induces violation of usual FDRs. The search for the appropriate correlation function which could restore the FDR, can be more insightful than a definition of ``non-equilibrium'' or ``effective temperatures''.Comment: 22 pages, 9 figure
    • …
    corecore