research

Fluctuation-Dissipation Theorem in Nonequilibrium Steady States

Abstract

In equilibrium, the fluctuation-dissipation theorem (FDT) expresses the response of an observable to a small perturbation by a correlation function of this variable with another one that is conjugate to the perturbation with respect to \emph{energy}. For a nonequilibrium steady state (NESS), the corresponding FDT is shown to involve in the correlation function a variable that is conjugate with respect to \emph{entropy}. By splitting up entropy production into one of the system and one of the medium, it is shown that for systems with a genuine equilibrium state the FDT of the NESS differs from its equilibrium form by an additive term involving \emph{total} entropy production. A related variant of the FDT not requiring explicit knowledge of the stationary state is particularly useful for coupled Langevin systems. The \emph{a priori} surprising freedom apparently involved in different forms of the FDT in a NESS is clarified.Comment: 6 pages; EPL, in pres

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020