On the basis of perturbed Kolmogorov backward equations and path integral
representation, we unify the derivations of the linear response theory and
transient fluctuation theorems for continuous diffusion processes from a
backward point of view. We find that a variety of transient fluctuation
theorems could be interpreted as a consequence of a generalized
Chapman-Kolmogorov equation, which intrinsically arises from the Markovian
characteristic of diffusion processes