390 research outputs found

    The evolution of antiferromagnetic susceptibility to uniaxial pressure in Ba(Fe{1-x}Co{x})2As2

    Full text link
    Neutron diffraction measurements are presented measuring the responses of both magnetic and structural order parameters of parent and lightly Co-doped Ba(Fe{1-x}Co{x})2As2 under the application of uniaxial pressure. We find that the uniaxial pressure induces a thermal shift in the onset of antiferromagnetic order that grows as a percentage of T_N as Co-doping is increased and the superconducting phase is approached. Additionally, as uniaxial pressure is increased within parent and lightly-doped Ba(Fe{1-x}Co{x})2As2 on the first order side of the tricritical point, we observe a decoupling between the onsets of the orthorhombic structural distortion and antiferromagnetism. Our findings place needed constraints on models exploring the nematic susceptibility of the bilayer pnictides in the tetragonal, paramagnetic regime.Comment: 10 pages, 7 figure

    Neutron scattering study of magnetic phase separation in nanocrystalline La5/8_{5/8}Ca3/8_{3/8}MnO3_3

    Full text link
    We demonstrate that magnetic phase separation and competing spin order in the colossal magnetoresistive (CMR) manganites can be directly explored via tuning strain in bulk samples of nanocrystalline La1x_{1-x}Cax_xMnO3_3. Our results show that strain can be reversibly frozen into the lattice in order to stabilize coexisting antiferromagnetic domains within the nominally ferromagnetic metallic state of La5/8_{5/8}Ca3/8_{3/8}MnO3_3. The measurement of tunable phase separation via magnetic neutron powder diffraction presents a direct route of exploring the correlated spin properties of phase separated charge/magnetic order in highly strained CMR materials and opens a potential avenue for realizing intergrain spin tunnel junction networks with enhanced CMR behavior in a chemically homogeneous material.Comment: 6 pages, 4 figures. New figure and text added to manuscrip

    Magnetic order and the electronic ground state in the pyrochlore iridate Nd2Ir2O7

    Full text link
    We report a combined muon spin relaxation/rotation, bulk magnetization, neutron scattering, and transport study of the electronic properties of the pyrochlore iridate Nd2Ir2O7. We observe the onset of strongly hysteretic behavior in the temperature dependent magnetization below 120 K, and an abrupt increase in the temperature dependent resistivity below 8 K. Zero field muon spin relaxation measurements show that the hysteretic magnetization is driven by a transition to a magnetically disordered state, and that below 8 K a complex magnetically ordered ground state sets in, as evidenced by the onset of heavily damped spontaneous muon precession. Our measurements point toward the absence of a true metal-to-insulator phase transition in this material and suggest that Nd2Ir2O7 lies either within or on the metallic side of the boundary of the Dirac semimetal regime within its topological phase diagram.Comment: 21 pages, 7 figure

    (Z)-2-(2-Isopropyl-5-methyl­phen­oxy)-N′-(2-oxoindolin-3-yl­idene)acetohydrazide

    Get PDF
    In the title Mannich base, C20H21N3O3, an isatin derivative of thymol, the O—CH2—C(=O)–N(H)—N fragment connect­ing the aromatic and fused-ring systems is approximately planar, with the N—N single bond in a Z configuration. The amino H atom of this N—N fragment is intra­molecularly hydrogen bonded to the carbonyl O atom of the indolinone fused ring as well as to the phen­oxy O atom of the aromatic ring. The amino H atom of the indoline fused ring forms a hydrogen bond with the double-bond O atom of an adjacent mol­ecule, this hydrogen bond giving rise to a linear chain motif

    Comprehensive Analysis of Homologous Proteins for Specific Drug Design

    Get PDF
    A drug is a chemical substance used in the diagnosis, treatment or prevention of disease or as a component of a medication, should be specific and freedom from side affect. Many issues should be addressed while designing a new drug or improving existing compound. The increase in the interdisciplinary nature of science gives bioinformatics, systems and computational biology, which helps in reducing research and development costs, minimize drug failures by predicting drug efficacy and toxicity. One of the most important pathogenic bacterium is Aeromonas species which causes tissue damage, acute gastroenteritis and neonatal septicemia. Bacterial proteins are the ultimate target to inhibit their growth and these are the executors of cellular function. In related to this we selected four such different proteins Flavohemo protein, Guanylate kinase, Topoisomerase and Oligopeptidase found to be present in both humans and Aeromonas to study the effects of antibiotics through in silico approaches. An attempt has been made to classify the inhibitors as host protein inhibitors or guest protein inhibitors. Finally we conclude that the molecule AgkI5 (2-morpholin-4-yl-thianthren-1-ylpyron-4-one) shown good inhibition with minimum binding energy -9.30, docking energy -10.03, inhibition constant 1.53e-007 and RMS 0.0 against Aeromonas Guanylate kinase [Aeromonas: Modelled] when compared to human Guanylate kinase [PDB ID: 1KJD]. So AgkI5 was predicted as a good antibiotic against Aeromonas Species.Keywords: Aeromonas species; Host; Guest; Guanylate kinase Docking; Protein Inhibitor

    Proposal to stabilize and detect half-quantum vortices in strontium ruthenate thin films: Non-Abelian braiding statistics of vortex matter in a px+ipy{p_x}+i{p_y} superconductor

    Full text link
    We propose a simple way to stabilize half-quantum vortices in superconducting strontium ruthenate, assuming the order parameter is of chiral px+ipyp_x + ip_y symmetry, as is suggested by recent experiments. The method, first given by Salomaa and Volovik in the context of Helium-3, is very naturally suited for strontium ruthenate, which has a layered, quasi-two-dimensional, perovskite crystal structure. We propose possible experiments to detect their non abelian-braiding statistics. These experiments are of potential importance for topological quantum computation

    Critical review on Mandabuddhitva in children and role of Samvardhana Ghrita in treatment

    Get PDF
    Ayurveda, which is the science of life, also called an eternal science; deals with spiritual, psychological and physical well being of the individual. Ayurveda being the science of life deals with all its aspects including the aspect of psyche. Although not explained in separate chapters, still conditions referred by our Acharyas as “Alpabuddhi, Mudha, Jada, Abudh” (indicating stunted growth of mental faculties) appear to be state of ‘mental retardation’ these conditions have been attributed to impaired development of buddhi. Mandabuddhitva can be correlated with Mental retardation. Mental retardation is a disorder consisting of below average intellectual functioning and impairment in adaptive skill, which is present, before the person is 18 years of age. This is the period when the brain along with the entire nervous system is in a state of development in order to reach maturity. In Ayurveda Samvardhana Ghrita mentioned by Acharya Kashyapa in the management of Mandabuddhitva

    Spin ordering and electronic texture in the bilayer iridate Sr3_3Ir2_2O7_7

    Full text link
    Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the bilayer iridium oxide Sr3_3Ir2_2O7_7 is explored. Our combined results resolve scattering consistent with a high temperature magnetic phase that persists above 600 K, reorients at the previously defined TAF=280T_{AF}=280 K, and coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge or orbital phase that freezes below T70T^{*}\approx70 K. Our study provides a window into the emergence of multiple electronic order parameters near the boundary of the metal to insulator phase transition of the 5d Jeff=1/2J_{eff}=1/2 Mott phase.Comment: Revised text and figures. 4 pages, 4 figure
    corecore