34 research outputs found

    Functional group diversity is key to Southern Ocean benthic carbon pathways

    Get PDF
    High latitude benthos are globally important in terms of accumulation and storage of ocean carbon, and the feedback this is likely to have on regional warming. Understanding this ecosystem service is important but difficult because of complex taxonomic diversity, history and geography of benthic biomass. Using South Georgia as a model location (where the history and geography of benthic biology is relatively well studied) we investigated whether the composition of functional groups were critical to benthic accumulation, immobilization and burial pathway to sequestration–and also aid their study through simplification of identification. We reclassified [1], [2]) morphotype and carbon mass data to 13 functional groups, for each sample of 32 sites around the South Georgia continental shelf. We investigated the influence on carbon accumulation, immobilization and sequestration estimate by multiple factors including the compositions of functional groups. Functional groups showed high diversity within and between sites, and within and between habitat types. Carbon storage was not linked to a functional group in particular but accumulation and immobilization increased with the number of functional groups present and the presence of hard substrata. Functional groups were also important to carbon burial rate, which increased with the presence of mixed (hard and soft substrata). Functional groups showed high surrogacy for taxonomic composition and were useful for examining contrasting habitat categorization. Functional groups not only aid marine carbon storage investigation by reducing time and the need for team size and speciality, but also important to benthic carbon pathways per se. There is a distinct geography to seabed carbon storage; seabed boulder-fields are hotspots of carbon accumulation and immobilization, whilst the interface between such boulder-fields and sediments are key places for burial and sequestration

    Against the flow: evidence of multiple recent invasions of warmer continental shelf waters by a Southern Ocean brittle star

    Get PDF
    The Southern Ocean is anomalously rich in benthos. This biodiversity is native, mostly endemic and perceived to be uniquely threatened from climate- and anthropogenically- mediated invasions. Major international scientific effort throughout the last decade has revealed more connectivity than expected between fauna north and south of the worlds strongest marine barrier – the Polar Front (the strongest jet of the Antarctic Circumpolar Current). To date though, no research has demonstrated any radiations of marine taxa out from the Southern Ocean, except at abyssal depths (where conditions differ much less). Our phylogeographic investigation of one of the most ubiquitous and abundant clades at high southern latitudes, the ophiuroids (brittlestars), shows that one of them, Ophiura lymani, has gone against the flow. Remarkably our genetic data suggest that O. lymani has successfully invaded the South American shelf from Antarctica at least three times, in recent (Pleistocene) radiation. Many previous studies have demonstrated links within clades across the PF this is the first in which northwards directional movement of a shelf-restricted species is the only convincing explanation. Rapid, recent, regional warming is likely to facilitate multiple range shift invasions into the Southern Ocean, whereas movement of cold adapted fauna (considered highly stenothermal) out of the Antarctic to warmer shelves has, until now, seemed highly unlikely

    Icebergs, sea ice, blue carbon and Antarctic climate feedbacks

    Get PDF
    Sea ice, including icebergs, has a complex relationship with the carbon held within animals (blue carbon) in the polar regions. Sea-ice losses around West Antarctica's continental shelf generate longer phytoplankton blooms but also make it a hotspot for coastal iceberg disturbance. This matters because in polar regions ice scour limits blue carbon storage ecosystem services, which work as a powerful negative feedback on climate change (less sea ice increases phytoplankton blooms, benthic growth, seabed carbon and sequestration). This resets benthic biota succession (maintaining regional biodiversity) and also fertilizes the ocean with nutrients, generating phytoplankton blooms, which cascade carbon capture into seabed storage and burial by benthos. Small icebergs scour coastal shallows, whereas giant icebergs ground deeper, offshore. Significant benthic communities establish where ice shelves have disintegrated (giant icebergs calving), and rapidly grow to accumulate blue carbon storage. When 5000 km2 giant icebergs calve, we estimate that they generate approximately 106 tonnes of immobilized zoobenthic carbon per year (t C yr−1). However, their collisions with the seabed crush and recycle vast benthic communities, costing an estimated 4 × 104 t C yr−1. We calculate that giant iceberg formation (ice shelf disintegration) has a net potential of approximately 106 t C yr−1 sequestration benefits as well as more widely known negative impacts

    Extremes in benthic ecosystem services; Blue carbon natural capital shallower than 1000 m in isolated, small and young Ascension Island’s EEZ

    Get PDF
    Biodiversity tends to decrease with increasing isolation and reduced habitat size, and increase with habitat age. Ascension Island and its seamounts are small, isolated and relatively young, yet, within its soon-to-be designated major Marine Protected Area, harbour patchily dense life in the shallows and cold water corals in deeper waters. With few local threats, global climate related stressors (e.g. temperature and acidification) and arguably plastic pollution are key issues for its survival and continued provision of ecosystem services. We evaluate the accumulated carbon in benthos around Ascension Island’s EEZ shallower than 1000 m using data from two research cruises in 2015 and 2017 through seabed mapping, seabed camera imagery and collections of benthos using a mini-Agassiz trawl. Benthos shallower than 1000 m essentially comprises the coastal waters around Ascension Island and three seamounts (Harris-Stewart, Grattan and Un-named). There is considerable societal benefit from benthic carbon storage and sequestration through its mitigation value buffering climate change. This service is often termed ‘blue carbon’. Overall we estimate that there is at least 43,000 tonnes of blue carbon, on the 3% of Ascension Island EEZ’s seabed which is <1000 m, mainly in the form of cold coral reefs. Two thirds of that occurs around the main island of Ascension, but it is very unevenly distributed on the seabed. Seabed roughness (e.g. rocky outcrops) seems most important for the development of blue carbon hotspots. About 21% of the total blue carbon is considered to be sequestered (removed from the carbon cycle for 100+ years) = 9060 tonnes Carbon. At the 2019 Shadow Price of Carbon the proportion of CO2 considered sequestered is £29-59. As 9060 t C this is equivalent to 33,250 t CO2, which in 2019 is valued at approximately £1-2 million. With time, this increases with rising value of carbon, but also annual increment of carbon deposition, to £2-4 million by 2030. Thus even when biogeographic values of isolation, size and age are least favourable to biodiversity, the natural capital stock and future services of benthic ecosystems can be considerable and generate a quantifiable economic return on their conservation

    The influence of glacial melt and retreat on the nutritional condition of the bivalve Nuculana inaequisculpta (Protobranchia: Nuculanidae) in the West Antarctic Peninsula

    Get PDF
    Due to climate change, numerous ice bodies have been lost in the West Antarctic Peninsula (WAP). As a consequence, deglaciation is expected to impact the marine environment and its biota at physiological and ecosystem levels. Nuculana inaequisculpta is a marine bivalve widely distributed around Antarctica that plays an important role for ecosystem functioning. Considering that N. inaequisculpta inhabits coastal areas under effect of glacial melt and retreat, impacts on its nutritional condition are expected due to alterations on its physiology and food availability. To test this hypothesis, biochemical composition (lipids, proteins, and fatty acids) and energy content were measured in individuals of N. inaequisculpta collected in a fjord at different distances to the retreating glacier in the WAP. Oceanographic parameters of the top and bottom-water layers (temperature, salinity, dissolved oxygen, and chlorophyll-a) were measured to investigate how the environment changes along the fjord. Results showed that surface oceanographic parameters displayed a lower temperature and dissolved oxygen, but a higher salinity and chlorophyll-a content at nearest compared to farthest sites to the glacier. In contrast, a lower temperature and chlorophyll-a, and a higher salinity and dissolved oxygen was measured in the bottom-water layer toward the glacier. N. inaequisculpta had a higher amount of lipids (17.42 ± 3.24 vs. 12.16 ± 3.46%), protein (24.34 ± 6.12 vs. 21.05 ± 2.46%) and energy content (50.57 ± 6.97 J vs. 39.14 ± 5.80 J) in the farthest compared to the nearest site to the glacier. No differences were found in total fatty acids among all sites. It seems likely that lower individual fitness related to proximity to the glacier would not be related to nutritional quality of sediment food, but rather to food quantity

    Gene flow in the Antarctic bivalve Aequiyoldia eightsii (Jay, 1839) suggests a role for the Antarctic Peninsula Coastal Current in larval dispersal

    Get PDF
    The Antarctic Circumpolar Current (ACC) dominates the open-ocean circulation of the Southern Ocean, and both isolates and connects the Southern Ocean biodiversity. However, the impact on biological processes of other Southern Ocean currents is less clear. Adjacent to the West Antarctic Peninsula (WAP), the ACC flows offshore in a northeastward direction, whereas the Antarctic Peninsula Coastal Current (APCC) follows a complex circulation pattern along the coast, with topographically influenced deflections depending on the area. Using genomic data, we estimated genetic structure and migration rates between populations of the benthic bivalve Aequiyoldia eightsii from the shallows of southern South America and the WAP to test the role of the ACC and the APCC in its dispersal. We found strong genetic structure across the ACC (between southern South America and Antarctica) and moderate structure between populations of the WAP. Migration rates along the WAP were consistent with the APCC being important for species dispersal. Along with supporting current knowledge about ocean circulation models at the WAP, migration from the tip of the Antarctic Peninsula to the Bellingshausen Sea highlights the complexities of Southern Ocean circulation. This study provides novel biological evidence of a role of the APCC as a driver of species dispersal and highlights the power of genomic data for aiding in the understanding of the influence of complex oceanographic processes in shaping the population structure of marine species

    Use of emerging technologies to help measure fjordic biodiversity and blue carbon: mini-manned submarines and autonomous underwater vehicle swarms

    Get PDF
    Meaningful protection of global oceans lags far behind that of land and has taken little consideration of climate mitigation potential to date (such as through assessment of blue carbon stocks and change). With the new emphasis on synergistic approaches to the identification and conservation of both carbon- and species- rich habitats, we need much better knowledge of the geography and status of blue carbon habitats beyond coastal wetlands. In subpolar and polar regions, some blue carbon habitats are still emerging and work as negative (mitigating) feedback on climate change, yet remain unprotected despite strong evidence of threat overlap. Scientific research expeditions are gradually increasing our understanding, but appropriate vessels are a limiting factor due to high costs and carbon footprints. Even when available such vessels cannot access all areas (e.g., remote fjords with sills) and may struggle to measure certain aspects of habitats (e.g., steep or vertical surfaces). New technologies and opportunities have advanced to aid some of these problems, and here, two of them are considered, mini-manned submersibles and autonomous underwater vehicles. These two platforms have both become much more available and affordable (through novel partnerships) while also being much more scientifically capable. This technology has the potential to reduce the carbon footprint of science and particularly aid in assessing biology and environment status and change on steep sides, such as fjord walls

    An Evaluation of Alternatives for Enhancing Anaerobic Digestion of Waste Activated Sludge

    Get PDF
    Waste activated sludge (WAS) is one of the largest by-products of biological wastewater treatment. Anaerobic digestion of WAS is beneficial for several reasons. In an ever increasingly energy conscientious world the production of renewable energy resources is becoming more important, and thus the production of methane has been seen as a valuable product. To achieve efficient conversion of organic matter to methane, the biomass in the digester must be provided optimal operating conditions, as well as adequate retention times, that will allow for substrate metabolism and prevent bacteria washout. Two approaches have been taken in this research to achieve improved biodegradation. Initially microwave pretreatment was employed to improve the biodegradability of the sludge, then the addition of a submerged hollow fibre membrane separation unit was used to allow for a longer SRT while maintaining the hydraulic residence time (HRT). The impact of microwave pretreatment on WAS characteristics was assessed for both the low temperature operations and the high temperature operations. An increase due to pretreatment on the filtered to total COD ratio when comparing the feed to the microwaved feed was established to be 200 % for low temperature operations and 254 % for high temperature operations. For the low temperature operations, CODT destruction, VS destruction, and organic nitrogen destruction were all higher for the test digester than the control digester indicating that the microwaving of the WAS increased the biodegradation in the anaerobic digester. For the high temperature operation, CODT destruction and organic nitrogen destruction were improved with microwave application, however VS destruction did not support this. The measured biogas data indicated that microwaving did influence the volume of biogas produced during anaerobic digestion of WAS for both the low and high temperature operations, and hence the VS destruction data for the high temperature operations was determined to be incorrect. For the membrane operations both the CODT and the VS destruction calculations indicated that at the same SRT the test digester was capable of more biodegradation than the control digester. The control digester organic nitrogen reduction was calculated to be higher than for the test digester, suggesting that the control digester removed more organic nitrogen than the test digester, however, these results were likely due to the lower HRT of the test digester compared to those of the control digester. A greater volume of biogas was produced by the test digester than the control digester; however, the composition of the gas from both digesters was similar, although the percentage of methane produced by the test digester was higher than that produced by the control digester. The higher destruction by the test digester indicated that the presence of the membrane unit and the decoupling of the HRT and SRT improved the biodegradation capability of the digesters. The results of the membrane performance study indicated that for a hollow fibre anaerobic membrane bioreactor, stable operations could be achieved with a total solids concentration of 2.01 %+/-0.34, an HRT of 15 days and an SRT of 30 days. With a constant flux of 14 L/m2-h +/-0.68 the average TMP was 0.079 kPa/min+/-0.08. No cleaning was required to achieve this, however the operations consisted of 20 minutes of permeation followed by 5 hours and 40 minutes of relaxation. The critical flux was determined to be in the range of 18 to 22 L/m2-h
    corecore