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Abstract

Due to climate change, numerous ice bodies have been lost in the West Antarctic Peninsula

(WAP). As a consequence, deglaciation is expected to impact the marine environment and

its biota at physiological and ecosystem levels. Nuculana inaequisculpta is a marine bivalve

widely distributed around Antarctica that plays an important role for ecosystem functioning.

Considering that N. inaequisculpta inhabits coastal areas under effect of glacial melt and

retreat, impacts on its nutritional condition are expected due to alterations on its physiology

and food availability. To test this hypothesis, biochemical composition (lipids, proteins, and

fatty acids) and energy content were measured in individuals of N. inaequisculpta collected

in a fjord at different distances to the retreating glacier in the WAP. Oceanographic parame-

ters of the top and bottom-water layers (temperature, salinity, dissolved oxygen, and chloro-

phyll-a) were measured to investigate how the environment changes along the fjord.

Results showed that surface oceanographic parameters displayed a lower temperature and

dissolved oxygen, but a higher salinity and chlorophyll-a content at nearest compared to far-

thest sites to the glacier. In contrast, a lower temperature and chlorophyll-a, and a higher

salinity and dissolved oxygen was measured in the bottom-water layer toward the glacier. N.

inaequisculpta had a higher amount of lipids (17.42 ± 3.24 vs. 12.16 ± 3.46%), protein

(24.34 ± 6.12 vs. 21.05 ± 2.46%) and energy content (50.57 ± 6.97 J vs. 39.14 ± 5.80 J) in

the farthest compared to the nearest site to the glacier. No differences were found in total

fatty acids among all sites. It seems likely that lower individual fitness related to proximity to

the glacier would not be related to nutritional quality of sediment food, but rather to food

quantity.
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Introduction

The Antarctic marine environment has long been one of the most stable environments in the

world due to its marked seasonality, especially regarding ice dynamic and availability of plank-

tonic food [1,2], but also one of the most vulnerable to global warming [3,4]. Early 20th century

measurements found a rapid increase in air temperature, reaching an increase of +5.6˚C over

the century average temperature [5]. Currently, one of the most impacted areas in Antarctica

is the Western Antarctic Peninsula (WAP) due to warming of the Circumpolar Deep Water

(CDW), produced by barotropic Kelvin waves [6], which have a direct influence on certain

parts of the Antarctic continental shelf [7]. Hence, warming shelf has led to constant losses of

sea ice and the melting/retreat of glaciers in small fjords along the WAP [7,8,9].

Temporal and spatial variations have been registered in the amount of food available in

Antarctic sediment, making Antarctic marine invertebrates that feed on deposited organic

matter vulnerable [10,11]. On the one hand, recent studies found seasonal changes in the

amount of food available in the sediment, with a higher amount of lipids and proteins (high

quality food) during the autumn, due to the vertical exportation of the last summer phyto-

plankton blooms and a higher amount of carbohydrates (low food quality) during spring [11].

On the other hand, spatial changes have been observed in the amount of food available in the

sediment in Antarctic places with an ancient and recent loss of ice shelves [10]. The results

show that there is a higher amount of lipids and proteins and a lower amount of carbohydrates

in the sites with an ancient loss than in the sites with a recent loss of the ice shelf [10]. In this

context, spatial changes in the amount of food available in the sediment could be expected due

to the recent melting and retreat of glaciers in small WAP fjords, which have made available

new ice-free habitats [12]. However, the effect of glacier melting and retreat on the energetic

storage and fitness of benthic species in the WAP is still poorly understood.

From a physiological point of view, the fitness of an organism is the ability to respond effi-

ciently to environmental or biological variations through physiological and biochemical mech-

anisms [13,14]. The fitness responds to adjustments of the energy budget made by the

organism and consequently, an individual can only store energy when the absorption of nutri-

ents exceeds the energy budget demand (i.e. under high food availability). Therefore, a greater

amount of stored energy would indicate greater fitness (i.e. higher survival and reproduction

rates), especially under stressful environments [13]. In this context, the glacier melting and

retreat can modify some oceanographic variables (e.g. temperature and salinity) and food

availability in sediments [15,16,17], and thus could have significant impacts on the physiology

and energy storage of benthic species. In this way, measuring nutritional condition of benthic

species can be used as a proxy to evaluate the impact of glacial melting and retreat on food

availability in sediment of Antarctic marine ecosystems.

Fitness is measurable through indicators of “nutritional condition” and have been com-

monly studied by means of biochemical components storage in marine bivalves of different

regions: tropical (e.g. Lyropecten nodosus) [18], temperate (e.g. Mytilus edulis, Mytilus gallopro-
vinvialis, Crassostrea gigas) [19], subpolar (e.g. Yoldia hyperborea) [20] and polar regions (e.g.

Laternula elliptica) [21]. Additionally, within biochemical components, lipid and protein rep-

resent the higher energetic values and they play an essential role on bivalve’s reproduction suc-

cess [22]. The biochemical composition has also crucial functions during development of early

stages, since it has been described that dry weight of several bivalve eggs are composed by 40–

50% of protein and 14–25% of lipid [23,24,25,26]. Thus, any variation in the biochemical com-

position of adult individuals could have direct effects on the reproductive energy investment

and viability of the offspring produced.
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Nuculana inaequisculpta (Lamy 1906) is a small size bivalve mollusc species that belongs to

the Protobranchia subclass, a taxonomic group that contains the most ancient bivalve molluscs

in the world [27,28]. It is an abundant infaunal species, patchy distributed in the South Shet-

land Islands and Antarctic Peninsula [29,30,31]. This species lives in benthic, muddy marine

habitats and feed mainly on sediment with organic deposits [32]. Documented individuals

have been captured at maximum depths ca. 800 m with size between 2.5–16 mm of shell length

[29,31]. Additional characteristics on the biology and ecology of this particular species are

common within the Protobranchia subclass. Species belonging this subclass have two separate

sexes, with a similar sex ratio (ca. one male for each female), high fecundity, and a lecitho-

trophic larval development with a pericalima larva [32]. Due to the particular important role

as nutrient recyclers and its high abundance [29,30,31], the present study focused on N. inae-
quisculpta to assess whether glacial melting and retreat, a product of regional warming, has an

effect on the nutritional status (i.e. fitness) of benthic species that inhabit Antarctic fjords.

Additionally, the potential implications of the nutritional status of the species on the stability

of its population on the Antarctic food web is also discussed.

Methods

Collection of oceanographic parameters

Marian Cove (MC) is an inlet within Maxwell Bay, located in the southeast of King George

Island (South Shetland Islands, WAP, Fig 1). The marine terminating glacier system at this

location has experienced a significant retreat in recent decades [15,33]. Onboard the RRS

James Clark Ross vessel, oceanographic measurements from the CONICYT-NERC project

campaign "ICEBERGS 1", in November 2017, were taken from four sites along Marian Cove

from the inlet opening to the proximity of the glacier margin. The sites were classified as fol-

lows: MC2 has not had contact with the glacier margin since the last glacial maximum. MC3

corresponds to the place where the glacier was located in the year 1950, while MC4 is

located near the glacier margin in 2008. Finally, MC5 is near the glacier margin in 2010 (Fig

1).

In order to characterize the system, measurements of seawater temperature, salinity, dis-

solved oxygen and chlorophyll-a (fluorescence) were obtained during November 2017,

through a vertical profile of the water column with the SeaBird 911plus CTD (Conductivity-

Temperature-Depth) system onboard the RRS James Clark Ross (JCR, British Antarctic Sur-

vey). Rosettes with Niskin bottles were used to collect discrete water samples for salinity analy-

sis. Then, to verify the salinity of the CTD measurements, the discrete samples were analyzed

with Autosal 8400B. Dissolved oxygen data (μmol/kg) was transformed to mg/L using the

molar mass of oxygen and density of seawater based on salinity and temperature data

recorded. Dissolved oxygen data in both measurement units (μmol/kg and mg/L) are available

in supplementary information (S2 File).

Top-water layer oceanographic parameters were studied independently from bottom-water

layer parameters. The bottom-water layer oceanographic parameters were separated to assess

whether a differential effect on the physiology of N. inaequisculpta could be detected along the

transect. Therefore, from the full vertical profile, data from the first 10 m (15 replicates per

study site and per oceanographic variable) and the last 10 m depth (15 replicates per study site

and per oceanographic variable) were selected and grouped to perform analyses. However,

given that the vertical profile of the site nearest to the glacier (MC5) only measured up to 70 m

depth but the seafloor was at a greater depth (over 100 m deep), we excluded this site from the

analyses.
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Nutritional condition of N. inaequisculpta
Sample collection. To assess the effect of deglaciation on the nutritional condition of N.

inaequisculpta, large specimens (> 8 mm of shell length) were collected close to the sites where

oceanographic data were measured (S1 Table, Fig 1). A total of 160 individuals (40 individuals

per site) were extracted using a Van Veen grab with a 20 cm x 40 cm x 40 cm bucket at a water

depth between 100 and 115 m. The samples were preserved in 99% ethanol and frozen at

-80˚C. Then, samples were transported to the Hydrobiological Resources Laboratory of the

Universidad Católica de la Santı́sima Concepción and stored in the same conditions until the

analysis. Last, of the 160 individuals collected, two groups of 80 individuals each were

Fig 1. Map showing the geographic location of the Antarctic Peninsula (A), King George Island (B) and Marian Cove (C). The white filled circles indicate the sampling

sites. Dashed lines indicate the historical record of the glacier margin within the fjord in different years.

https://doi.org/10.1371/journal.pone.0233513.g001
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separated to proximal biochemical composition analysis: 1) lipid content and fatty acids, 2)

protein content.

Size and biomass. In the laboratory, shell length, defined as the distance between the ante-

rior and posterior edge of the shell, was measured in 160 individuals using a Vernier caliper

(0.01 mm precision). To determine the body mass without shell, salt and sediments were

removed from the soft tissue of each individual using abundant distilled water on a 0.2 mm

sieve. Clean samples were stored in labeled Eppendorf tubes, and then were frozen at -20˚C,

and dried by sublimation in a lyophilizer (FDU-7012, Operon) for 48 h at -80˚C. Once dried,

biomass of 160 individuals, defined as the dry weight of the individuals, was determined using

an analytical balance of 0.1 mg sensitivity (LA230S SARTORIUS).

Proximate biochemical composition (lipid and protein content). The biochemical com-

position (i.e. total lipid and protein content) was determined in 4 mg of homogenized dry

weight (DW) for each individual and expressed in absolute (mg � 4mg–1) and relative (% dry

weight, DW) values. To improve the performance of the biochemical tests, the samples were

subjected to an ultrasonic bath (AC-120H, MRC) with distilled water, for 15 minutes at 6˚C,

prior to the following analyses.

The total lipid content was determined in 80 dry and ethanol-preserved samples (20 indi-

viduals per study site) following the gravimetric method set by Folch et al. [34] and later modi-

fied by Cequier-Sánchez et al. [35]. First, each dried sample was homogenized in labeled

amber tubes with 5 mL of dichloromethane: methanol mix (2:1). Then, the samples were

mixed with 4 mL 0.88% potassium chloride, mixed by vortex (SBS100-2, Select Vortexer) for

15 seconds, and centrifuged (S-8, Boeco) for 5 minutes at 6˚C and 1500 rpm. Subsequently,

the precipitate of each sample was transferred to pre-weighed vials and dried with ultrapure

nitrogen gas to evaporate the solvent (109A YH-1, Glass Col). The total lipid extract obtained

after evaporating the solvent was calculated by weighing the full vial (containing the lipid

extract) on a precision balance (120A, Precise) and subtracting the empty vial’s weight. Finally,

the lipid extract of each sample was preserved at -80˚C in dichloromethane: methanol mix

(2:1) with Butylhydroxytoluene (BHT) as antioxidant to avoid the degradation of fatty acids

for future analysis.

The total protein content was determined in the remaining 80 samples (20 individuals per

study site) through a microplate adaptation of the BIO-RAD colorimetric assay kit, by Lowry

et al. [36], which includes three reagents: S, A, and B. Therefore, 4 mg of dry weight per indi-

vidual was homogenized in 200 μL of ultrapure water (Mili-Q), then 5 μL of the homogenized

suspension was transferred to a 96-well microplate with 200 μL of Reagent B and 25 μL of

Reagent A’ (i.e. a mixture of 20 μL of Reagent S and 1 mL of Reagent A). Subsequently, the

samples were shaken for 15 seconds by vortex (SBS100-2, Select Vortexer) and incubated in

the microplates for 15 minutes at room temperature. Finally, the absorbance was measured in

a spectrophotometer at a wavelength of 750 nm (ELx808, Biotek). The concentration of each

sample was obtained using a calibration curve for proteins, diluting different concentrations of

bovine serum albumin (500–0111, Bio-Rad).

Energy content. The energy content (J � 4mg–1) of 80 individuals was estimated from the

biochemical composition data (i.e. lipid and protein contents) using bioenergetic equivalents.

The bioenergetic equivalents were calculated using the following conversion coefficients: (a) 1

mg of lipids = 39.54 J and (b) 1 mg of protein = 23.64 J [37]. An approximation of the total

energy content for each individual was calculated by adding both energy equivalents of the

biochemical composition (as Total Energy = J � mg lipids + J � mg proteins) [37,38,39]. Carbo-

hydrates are not considered due their minor contribution to the sample’s total biomass.

Fatty acids composition. The composition of fatty acids was determined in 80 samples

(20 individuals per study site) using standard methods [40,41]. Fatty acid methyl esters
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(FAMEs) were measured after preparation using the lipid extract of samples (lipid content).

Lipid extracts were esterified using sulfuric acid (1% in methanol) incubations at 70˚C for 1 h

in a Thermo-Shaker (DBS-001, MRC). Then, each sample was mixed with 3 mL of n-hexane

and centrifuged for 15 s. This process was repeated three times and the supernatant was trans-

ferred to labeled tubes. Finally, fatty acids were concentrated using a nitrogen evaporator

(109A YH-1, Glass Col). The measurement of FAMEs was performed using a gas chromato-

graph (Agilent, model 7890A) at set temperature equipped with a DB-225 column (J&W Sci-

entific, 30 m in length, 0.25 internal diameter, and 0.25 mm film). Using chromatograph

software (Agilent ChemStation, USA), individual FAMEs were identified by comparison to

known standard fatty acids of marine origin (certificate material, Supelco 37 FAME mix

47885-U [40,42]. Each sample was quantified using a calibration curve for fatty acids, diluting

different concentrations of Supelco 37 FAME mix standard.

Statistical analysis

All the statistical analyses were performed in STATISTICA V8 and PRIMER V6 (+ PERMA-

NOVA), with a 95% confidence level (p< 0.05), based on standard methods [43,44,45]. Each

top and bottom-water layer oceanographic parameter data obtained in all study sites (i.e. tem-

perature, salinity, dissolved oxygen, and chlorophyll-a) were analyzed with a nonparametric

Kruskal-Wallis test. The size, biomass and protein content of N. inaequisculpta individuals

obtained in the different study sites were evaluated by a Kruskal-Wallis test, while the other

nutritional parameters of individuals (i.e. lipid content, energy, and fatty acids) were evaluated

using one-way ANOVA test. For both, oceanographic and nutritional variables, analyses were

performed with the “site” factor [with four levels: MC2 (farthest to the glacier), MC3, MC4

and MC5 (nearest to the glacier)]. All results are shown as mean values, with standard devia-

tion (±SD). The assumptions of ANOVA were evaluated with the Kolmogorov-Smirnov and

the Levene’s tests for the normality and homogeneity of variances, respectively. When signifi-

cant statistical differences were found for the ANOVA or Kruskal-Wallis test, a Tukey test or a

multiple range test with a Bonferroni correction was performed to estimate differences

between treatments.

Additionally, multivariate analyses were carried out in PRIMER V6 to compare the compo-

sition of fatty acids. First, a one-way PERMANOVA analysis was performed to evaluate the

complete data set of fatty acids. Then, to evaluate the percentage of contribution of each fatty

acid to similarity between treatments, a similarity percentage analysis (SIMPER) was carried

out.

Results

Oceanographic parameters

Sea surface parameters (top 10 m). Sea surface temperature showed significant differ-

ences among sites (Kruskal-Wallis test, H3,15 = 12.73; p< 0.001) with a clear pattern of declin-

ing temperature towards the glacier edge (MC5). The highest temperature was recorded in

MC2 (–0.33 ± 0.006˚C), followed by MC3 (–0.44 ± 0.11˚C), and MC4 (–0.59 ± 0.004˚C); while

the lowest temperature was recorded in MC5 (–0.83 ± 0.016˚C) (Fig 2A; S2 Table). Similar to

the temperature results, salinity had significant differences among study sites (Kruskal-Wallis

test, H3,15 = 8.53; p< 0.05). Lower surface salinity was found at the farthest (MC2:

33.95 ± 0.008 PSU; MC3: 33.94 ± 0.7 PSU) compared to the nearest sites to the glacier (MC4:

34.02 ± 0.002 PSU; MC5: 34.05 ± 0.03 PSU) (Fig 2B, S2 Table).

Dissolved oxygen also showed significant differences among the study sites (Kruskal-Wallis

test, H3,15 = 13.05; p< 0.01) and declining toward the glacier. The highest amount of dissolved
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oxygen was found at the farthest site from the glacier (MC2: 10.55 ± 0.01 mg/L), followed by

the MC3 site (10.42 ± 0.04 mg/L), MC4 (10.30 ± 0.02 mg/L) and MC5 (10.12 ± 0.01 mg/L) (Fig

2C, S2 Table). The amount of surface chlorophyll-a also showed significant differences (Krus-

kal-Wallis test, H3,15 = 11.36; p< 0.01), with a lower amount of chlorophyll-a at the more dis-

tant sites (MC2: 0.065 ± 0.01 mg/m3; MC3: 0.070 ± 0.03 mg/m3) and higher amounts at sites

near the glacier front (MC4: 0.16 ± 0.01 mg/m3; MC5: 0.56 ± 0.05 mg/m3) (Fig 2D, S2 Table).

Sea depth parameters (bottom 10 m). The deep temperature profiles showed significant

differences among the study sites (Kruskal-Wallis test, H2,15 = 9.5; p< 0.01) with a trend of

decrease from distant to closer sites to the glacier. The highest temperature was recorded in

MC2 (–1.05 ± 0.02˚C), followed by MC3 (–1.73 ± 0.03˚C), while the lowest was recorded in

MC4 (–1.77 ± 0.004˚C) (Fig 3A, S2 Table). Significant differences among salinities of the study

sites (Kruskal-Wallis test, H2,15 = 9.38; p< 0,01) followed an opposite gradient, with the lowest

salinity at the farthest site from the glacier (MC2: 34,18 ± 0,003 PSU), followed by MC3

(34.28 ± 0.008 PSU), and lastly MC4 with the highest values (34.29 ± 0.001 PSU) (Fig 3B, S2

Table).

Dissolved oxygen measurements were also significantly different among the study sites

(Kruskal-Wallis test, H2,15 = 12.50; p< 0.01), with a decreasing trend similar to salinity. The

Fig 2. Oceanographic instrumental variability for the top 10 m of the seawater column. Plot (a) temperature (˚C), (b) salinity (PSU), (c) dissolved oxygen

(mg/L), and (d) chlorophyll-a (mg/m3). The four sites are at different distances from a melting glacier (MC2 distal, MC5 proximal) in Marian Cove, WAP.

Different letters on black circles indicate significant differences among sites after multiple range test with a Bonferroni correction. Measurements are given as

average values ± SD (n = 15).

https://doi.org/10.1371/journal.pone.0233513.g002
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lowest amount of dissolved oxygen was measured at the farthest site from the glacier (MC2:

9.94 ± 0.02 mg/L), while the highest was at the nearest sites to the glacier (MC3: 10.26 ± 0.01

mg/L; MC4: 10.23 ± 0.02 mg/L) (Fig 3C, S2 Table). In contrast to salinity and dissolved oxy-

gen, the measurements of chlorophyll-a. showed the highest amount at the farthest site (MC2:

0.038 ± 0.007 mg/m3) than at the nearest sites to the glacier (MC3: 0.007 ± 0.003 mg/m3; MC4:

0.005 ± 0.001 mg/m3) (Fig 3D, S2 Table), with significant differences among all sites (Kruskal-

Wallis test, H2,15 = 9.5; p<0.01).

Nutritional condition of N. inaequisculpta
Size and biomass. No significant differences were found among sampling sites for indi-

vidual shell length regardless of the distance to the glacier (Kruskal-Wallis test, H3,160 = 4.76;

p = 0.19) (Fig 4A, S3 Table). Also, body biomass (as dry weight of soft tissue, mg � ind.-1) pre-

sented significant differences among sampling sites, where the individuals from the MC3 site

showed a significantly higher body biomass (10.09 ± 3.73 mg) than those from MC2

(4.84 ± 0.75 mg), MC4 (5.30 ± 1.48 mg), and MC5 (5.07 ± 0.68 mg) (Kruskal-Wallis test, H3,160

= 63.51; p< 0.001) (Fig 4B, S3 Table).

Fig 3. Oceanographic instrumental variability for the bottom 10 m of the seawater column. Plot (a) temperature (˚C), (b) salinity (PSU), (c) dissolved

oxygen (mg/L), and (d) chlorophyll-a (mg/m3). The four sites are at different distances from a melting glacier (MC2 distal, MC5 proximal) in Marian Cove,

WAP. Different letters on black circles indicate significant differences among sites after multiple range test with a Bonferroni correction. Measurements are

given as average values ± SD (n = 15).

https://doi.org/10.1371/journal.pone.0233513.g003
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Proximate biochemical composition (lipid and protein content). The values of lipid

content per individual (mg � 4mg –1) showed statistically significant differences among sam-

pling sites (one-way ANOVA, F3,76 = 12.30; p< 0.001). Individuals of the farthest site to the

glacier (MC2: 0.70 ± 0.13 mg) presented higher amount of lipids than individuals from all

other sampling sites (MC3: 0.52 ± 0.11 mg; MC4: 0.52 ± 0.11 mg; MC5: 0.49 ± 0.14 mg) (Fig

Fig 4. Boxplot of the spatial variation of: (a) shell length (mm � ind.–1) and (b) tissue dry weight (mg � ind.–1) of adult

individuals of N. inaequisculpta caught at different four sites (MC2 to MC5) at progressive distance from a melting

glacier (MC2 distal, MC5 proximal) in Marian Cove, WAP. Different letters on box indicate significant differences

among sites after Tukey’s HSD test or multiple range test with a Bonferroni correction. Measurements are given as

average values ± SD (n = 160).

https://doi.org/10.1371/journal.pone.0233513.g004
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5A, S4 Table). Consistently, the percentage of lipids (% dry weight, DW) showed a tendency

similar to that of total lipids (mg � 4mg–1) and significant differences were detected (one-way

ANOVA, F3,76 = 12.30; p< 0.001). Individuals captured in MC2 had higher percentage of

lipid (17.42 ± 3.24%) than individuals from the three others sites at different distances from

the glacier (MC3: 12.92 ± 2.75%; MC4: 12.89 ± 2.77%; MC5: 12.16 ± 3.46%) (Fig 5B, S4 Table).

The protein content (mg � 4mg–1) showed significant differences among individuals of

some study sites (Kruskal-Wallis test, H3,80 = 11.82; p< 0.01). Individuals of MC4 site pre-

sented a higher protein content (1.03 ± 0.20 mg) than individuals of MC5 site (0.84 ± 0.10

mg), whereas individuals of MC2 and MC3 sites presented similar values between them (MC2:

0.97 ± 0.25 mg; MC3: 0.93 ± 0.17 mg) (Fig 5C, S3 Table). Similarly, the percentage of proteins

(%DW) were also statistically significant among individuals of some sampling sites (Kruskal-

Wallis test, H3,80 = 11.82; p< 0.01) and displayed the same trend with highest protein percent-

ages in the MC4 site (25.76 ± 4.88%) than individuals from the MC5 site (21.05 ± 2.46%). Indi-

viduals captured at the MC2 and MC3 sites showed similar values between them (MC2:

24.34 ± 6.12%, MC3: 23.22 ± 4.24%) (Fig 5D, S3 Table).

Fig 5. Boxplot of the spatial variation of: (a) lipid content (mg � 4mg–1), (b) lipid content (% DW), (c) protein content (mg � 4mg–1), and (d) protein content

(% DW) among adult individuals of N. inaequisculpta collected four sites (MC2 to MC5) at progressive distance from a melting glacier (MC2 distal, MC5

proximal) Marian Cove, WAP. Different letters on box indicate significant differences among sites after Tukey’s HSD test. Measurements are given as average

values ± SD (n = 80).

https://doi.org/10.1371/journal.pone.0233513.g005
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Energy content. Energy content per individual (J � 4mg–1) showed significant differences

among sampling sites, where the individuals from the three sites farthest from the glacier

showed a higher energy content (MC2: 50.57 ± 6.97 J; MC3: 42.39 ± 4.65 J; MC4: 44.74 ± 6.70

J) than individuals from the nearest site (MC5: 39.14 ± 5.80 J) (Fig 6, S4 Table). These differ-

ences were statistically significant among individuals from sites at different distances from the

glacier (one-way ANOVA, F3,76 = 12.50; p< 0.001).

Fatty acids composition. The one-way ANOVA analyses, comparing each fatty acid

among groups of individuals from the different sampling sites, did not detect significant differ-

ences (Table 1). For example, the proportion of total saturated fatty acids (SFA; MC2:

30.88 ± 3.21 mg FA � g dry weight, MC3: 33.54 ± 3.23 mg FA � g dry weight, MC4:

32.32 ± 3.16 mg FA � g dry weight, MC5: 30.80 ± 3.15 mg FA � g dry weight) (one-way

ANOVA, F3,11 = 1.21; p = 0.32), and monounsaturated fatty acids (MUFA; MC2: 11.21 ± 2.60

mg FA � g dry weight, MC3: 12.20 ± 2.43 mg FA � g dry weight, MC4: 11.34 ± 2.51 mg FA � g

dry weight, MC5: 11.30 ± 2.56 mg FA � g dry weight) (one-way ANOVA, F3,11 = 0.93; p = 0.44)

was very similar across all study sites. Similarly, polyunsaturated fatty acids n-6 (PUFA n-6;

MC2: 3.00 ± 0.52 mg FA � g dry weight, MC3: 3.54 ± 0.14 mg FA � g dry weight, MC4:

3.39 ± 0.35 mg FA � g dry weight, MC5: 3.25 ± 0.43 mg FA � g dry weight) (one-way ANOVA,

F3,11 = 2.14; p = 0.27), polyunsaturated fatty acids n-3 (PUFA n-3; MC2: 5.25 ± 0.72 mg FA � g

dry weight, MC3: 5.52 ± 0.57 mg FA � g dry weight, MC4: 5.47 ± 0.65 mg FA � g dry weight,

MC5: 5.36 ± 0.69 mg FA � g dry weight) (one-way ANOVA, F3,11 = 3.03; p = 0.13), and total

polyunsaturated fatty acids (total PUFA; MC2: 8.25 ± 0.59 mg FA � g dry weight, MC3:

9.06 ± 0.41 mg FA � g dry weight, MC4: 8.86 ± 0.50 mg FA � g dry weight, MC5: 8.61 ± 0.54

mg FA � g dry weight) (one-way ANOVA, F3,11 = 1.55; p = 0.36) also showed no significant dif-

ferences among study sites (Table 1).

PERMANOVA analysis which compared the overall fatty acid data, did not show signifi-

cant differences among sampling sites (one-way PERMANOVA, Pseudo-F3,76 = 0.79; p = 0.61;

9999 permutations). The similarity among all groups is consistent with results from the SIM-

PER analysis, in which palmitic (C16:0), stearic (C18:0), myristic (C14:0), oleic (C18:1n-9),

and EPA (C20:5n-3) fatty acids had the highest percentage of similarity contribution in all

groups (S5 Table).

Discussion

Oceanographic parameters

Sea surface (top 10 m) parameters showed a lower salinity and chlorophyll-a concentration in

sites farther away from the glacier edge, whereas temperature and dissolved oxygen decreased

in sites nearest to the glacier (Fig 2). Water surface temperature followed a trend previously

found by Yoo et al. [15] in the same study site, where it is clearly observed that nearby sites

have a lower temperature than sites far away from the glacier. Strikingly, salinity does not

show consistency with the pattern found in other surveys at the same study site [15], since sites

near the glacier show a higher salinity (34.05 ± 0.03 PSU) than sites far from it (33.95 ± 0.008

PSU). It has been described that an adjacent site to the glacier is highly stratified unlike the far-

thest site from the glacier, recognizing four different water layers during summer [15]. The

present study focused on the first water layer (top 10 m), which is characterized by cold and

cloudy meltwater. In this context, although the data shown in this study are different, it may

be due to a greater amount of non-melted ice at the nearest site to the glacier than at the far-

thest site to the glacier (personal observation). The lower amount of dissolved oxygen at the

site near the glacier could be explained by an increased production of organic matter and/or
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bacterial respiration due to the increase in nutrients that are released during glacier melting

[46].

The surface chlorophyll-a values recorded in this work (ca. 0.20–0.50 mg/m3) are within

the ranges previously described for King George Island fjords. For example, a study made in

Marian Cove between 1996–2008 recorded chlorophyll-a values between ca. 0.25–0.90 mg/m3

during November [47,48]. Consistently, another study made in Potter Cove between 1991–

2009 recorded a range of chlorophyll-a values between ca. 0.20–1.30 mg/m3 during the same

period [49]. The amount of chlorophyll-a found in this work can be influenced by a wide vari-

ety of factors. In the primary productivity context, iron is the most limiting micronutrient in

the Southern Ocean [50] and its release in some areas of the WAP has been demonstrated due

to glacial melting [51]. Similar results were found in Marian Cove, since increased release of

important macro- and micronutrients (e.g. Fe and Mn) has been measured when the glacier

melts into the seawater [52]. Therefore, although the dynamics in the Antarctic fjords are com-

plex, this late spring nutrient release could play an important role in the primary productivity

found in this work in the nearer sites to the melting glacier.

In bottom waters (bottom 10 m), significant differences were also found in the oceano-

graphic parameters measured between the study sites. Lower temperature and chlorophyll-a,

and a greater amount of dissolved oxygen and salinity, were found at sites nearer to the glacier

Fig 6. Boxplot of the spatial variation of energy content (J � 4mg–1) in adult individuals of N. inaequisculpta from four sites (MC2 to

MC5) at progressive distance from a melting glacier (MC2 distal, MC5 proximal) in Marian Cove, WAP. Different letters on box indicate

significant differences among sites after Tukey’s HSD test. Measurements are given as average values ± SD (n = 80).

https://doi.org/10.1371/journal.pone.0233513.g006
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compared to those farther (Fig 3). The temperature pattern reported here suggests that glacier

melting could be lowering the temperature of the water adjacent to the glacier by releasing sub-

glacial meltwater. The low levels of chlorophyll-a found in bottom waters, compared with chlo-

rophyll-a found in surface waters, on the one hand could be a sign of high consumption of

phytoplankton by primary consumers. On the other hand, perhaps only a portion of the

organic matter exported to the benthic system in the last phytoplankton bloom event could be

observed due to the influence of the bottom water currents. Salinity is within normal range of

values described previously for Antarctic waters, while dissolved oxygen is over some values

recently recorded at south of the WAP (i.e. mean salinity is around 34 PSU) [49], (dissolved

oxygen between 6.57–7.65 mg/L approximately at 100 m depth) [51]. These values suggesting

the differences found among sites may not have an effect on the biology/physiology of the

studied species.

Table 1. Fatty Acid (FA) composition (expressed in mg FA � g dry weight-1 (DW) and in % of total FA pool in parentheses) of the soft tissue of N. inaequisculpta at

different distances from a melting glacier in Marian Cove, WAP.

Site

Fatty acids MC2 MC3 MC4 MC5

C11:0 1.34 ± 0.35 (2.66) 1.86 ± 0.80 (3.39) 1.48 ± 0.58 (2.82) 1.35 ± 0.40 (2.66)

C12:0 1.21 ± 0.21 (2.4) 1.40 ± 0.23 (2.55) 1.41 ± 0.27 (2.67) 1.41 ± 0.36 (2.78)

C14:0 2.18 ± 1.12 (4.33) 2.71 ± 0.97 (4.95) 2.66 ± 1.01 (5.06) 2.13 ± 0.85 (4.20)

C15:0 1.64 ± 0.55 (3.26) 1.59 ± 0.64 (2.90) 1.56 ± 0.57 (2.97) 1.37 ± 0.48 (2.70)

C16:0 10.86 ± 4.96 (21.57) 11.29 ± 5.05 (20.60) 10.94 ± 4.77 (20.83) 10.87 ± 4.84 (21.44)

C17:0 1.2 ± 0.58 (2.38) 1.49 ± 0.48 (2.72) 1.63 ± 0.71 (3.10) 1.47 ± 0.58 (2.90)

C18:0 6.89 ± 2.72 (13.69) 6.93 ± 2.87 (12.65) 6.87 ± 2.78 (13.08) 6.57 ± 2.79 (12.96)

C20:0 1.93 ± 0.84 (3.83) 1.95 ± 0.82 (3.56) 1.80 ± 0.83 (3.43) 1.93 ± 0.80 (3.81)

C22:0 1.68 ± 0.81 (3.34) 2.29 ± 0.86 (4.18) 2.01 ± 0.67 (3.83) 1.76 ± 0.77 (3.47)

C23:0 1.95 ± 0.83 (3.87) 2.03 ± 0.93 (3.70) 1.96 ± 1.00 (3.73) 1.94 ± 0.76 (3.83)

Total SFA 30.88 ± 3.21 (61.34) 33.54 ± 3.23 (61.20) 32.32 ± 3.16 (61.54) 30.80 ± 3.15 (60.74)

C14:1n-5 1.88 ± 1.00 (3.73) 2.54 ± 1.14 (4.64) 1.95 ± 0.78 (3.71) 1.88 ± 0.92 (3.71)

C16:1n-9 1.70 ± 1.06 (3.38) 1.73 ± 0.99 (3.16) 1.74 ± 1.06 (3.31) 1.80 ± 1.15 (3.55)

C18:1n-9 6.66 ± 2.63 (13.23) 6.61 ± 2.26 (12.06) 6.56 ± 2.32 (12.49) 6.62 ± 2.38 (13.05)

C22:1n-9 0.97 ± 0.46 (1.93) 1.32 ± 0.51 (2.41) 1.09 ± 0.42 (2.08) 1.00 ± 0.54 (1.97)

Total MUFA 11.21 ± 2.60 (22.27) 12.20 ± 2.43 (22.26) 11.34 ± 2.51 (21.59) 11.30 ± 2.56 (22.28)

C18:2n-6t 1.13 ± 0.46 (2.24) 1.67 ± 0.69 (3.05) 1.45 ± 0.67 (2.76) 1.32 ± 0.65 (2.60)

C20:4n-6 (ARA) 1.87 ± 0.76 (3.71) 1.87 ± 0.85 (3.41) 1.94 ± 0.82 (3.69) 1.93 ± 0.70 (3.81)

Total n-6 PUFA 3.00 ± 0.52 (5.96) 3.54 ± 0.14 (6.46) 3.39 ± 0.35 (6.45) 3.25 ± 0.43 (6.41)

C20:3n-3 0.98 ± 0.48 (1.95) 1.24 ± 0.42 (2.26) 1.13 ± 0.48 (2.15) 1.02 ± 0.48 (2.01)

C20:5n-3 (EPA) 2.40 ± 0.90 (4.77) 2.38 ± 0.85 (4.34) 2.42 ± 0.96 (4.61) 2.36 ± 0.78 (4.65)

C22:6n-3 (DHA) 1.87 ± 0.75 (3.73) 1.90 ± 0.81 (3.47) 1.92 ± 0.89 (3.68) 1.98 ± 0.82 (3.90)

Total n-3 PUFA 5.25 ± 0.72 (13.43) 5.52 ± 0.57 (10.07) 5.47 ± 0.65 (10.42) 5.36 ± 0.69 (10.57)

Total PUFA 8.25 ± 0.59 (16.39) 9.06 ± 0.41 (16.53) 8.86 ± 0.50 (16.87) 8.61± 0.54 (16.98)

Total FA 50.34 ± 2.60 (100) 54.80 ± 2.58 (100) 52.52 ± 2.55 (100) 50.71 ± 2.54 (100)

n-3/n-6 1.75 ± 0.59 1.56 ± 0.41 1.61 ± 0.50 1.65 ± 0.54

ARA/EPA 0.78 ± 0.37 0.79 ± 0.36 0.80 ± 0.34 0.82 ± 0.30

DHA/EPA 0.78 ± 0.37 0.80 ± 0.34 0.79 ± 0.35 0.84 ± 0.27

Mean ± SD, n = 80. Abbreviations are the following = SFA: saturated FA; MUFA: monounsaturated FA; PUFA: polyunsaturated FA; ARA: arachidonic acid; EPA:

eicosapentaenoic acid; DHA: docosahexaenoic acid. SFA = sum of C11:0, C12:0, 14:0, 15:0, 16:0, 17:0, 18:0 C20:0, C22:0 and C23:0; MUFA = sum of 14:1n-5, 16:1n-9,

18:1n-9 and 22:1n-9; Total n-6 PUFA = sum of 18:2n-6t and 20:4n-6; Total n-3 PUFA = sum of 20:3n-3, 20:5n-3, 22:5n-3 and 22:6n-3; Total PUFA = sum of n-3 and n-6

PUFA; Total FA = sum of Total SFA, Total MUFA, and Total PUFA.

https://doi.org/10.1371/journal.pone.0233513.t001

PLOS ONE The influence of glacial melt and retreat on the nutritional condition of the bivalve Nuculana inaequisculpta

PLOS ONE | https://doi.org/10.1371/journal.pone.0233513 May 21, 2020 13 / 23

https://doi.org/10.1371/journal.pone.0233513.t001
https://doi.org/10.1371/journal.pone.0233513


Nutritional condition of N. inaequisculpta
Considering the technical difficulties for sampling in polar environments when the ocean is

covered by sea-ice, the results presented here could be used as a first approach of spatial varia-

tion on the nutritional condition of this species during late spring. However, considering also

that the nutritional status of individuals is likely to be affected by oceanographic parameters

on a wide time scale, it is necessary to obtain samples at different seasons in futures studies (if

possible) or use a mathematical model to predict how the nutritional condition of this species

varies during an annual cycle. In this context, the oceanographic data (seawater temperature,

salinity, dissolved oxygen, and chlorophyll-a) measured were within the natural environment

ranges described previously for the WAP in different temporal scales [49,51,53,54]. Experi-

ments performed on stenothermal Antarctic marine invertebrates that evaluate the effect of

seawater temperature on the physiology (e.g. thermal tolerances), indicate that in general,

there is a low capacity for acclimatization to the increased above natural environmental values

[55,56,57]. However, the experimental factor values used in these studies are quite different

than the values of the oceanographic parameters measured in situ in this work. For example, a

study in Antarctic isopod species reported changes in some biological functions (e.g. reduction

in the locomotor activity and weak reaction to food odour) when exposed to temperature

increase (between 0 ºC and 5 ºC) and salinity decline (30–34 PSU) [58].

Additionally, the number of studies that assess the effect of oxygen concentration on Ant-

arctic marine invertebrates has increased in the last decades [59]. In the context of climate

change, in polar species it has been observed that large sized species are more sensitive to oxy-

gen decrease than small sized species [60]. Although some species have followed this pattern

(e.g. bivalve Laternula elliptica) [61,62], others did not support this hypothesis (e.g. 12 pycno-

gonid species) [63], suggesting divergent responses across species/taxa. In this context,

although the previous hypothesis should not apply to our focal species due to its small size it is

necessary to evaluate this topic in future studies. Nonetheless, our natural environment data

showed dissolved oxygen values of 300 μmol/kg, which are similar to natural environment val-

ues reported previously for WAP at 100 m depth (160–300 μmol/kg) [51]. Thus, all the oceano-

graphic data suggest that there were favorable environmental conditions for the physiological/

biological performance of benthic marine fauna at Marian Cove at the time of sampling.

Regarding N. inaequisculpta nutritional condition/fitness results, and considering the slow

tissue turnover in polar regions, the biochemical composition observed in the focal species

could be reflecting the diet of a couple months ago [64]. In this context, it would be interesting

to develop a year-round research to determine how the biochemical composition of this spe-

cies changes in relation to the food available in the sediment. As for N. inaequisculpta bio-

chemical composition, the present study shows that proteins are the main biochemical

component of the species dry weight (21–25% DW), above the amount of lipids (12–17%

DW). Comparatively, the lipid content values found in N. inaequisculpta are higher than those

reported for some marine bivalves of temperate, sub-arctic and Antarctic regions (Table 2).

Whereas, it is not possible to observe a clear pattern on the protein content of different marine

bivalve species, which could be related to a large data variation and a lack of analytical methods

standardization (Table 2). Furthermore, some results similar to ours on the biochemical com-

position in other Antarctic marine invertebrate species have been described [65]. For example,

a higher protein content relative to lipid content was found in the marine Antarctic gastropods

Austrodoris kerguelensis, Tritoniella belli and Marseniopsis mollis (protein: 7–25% DW, lipid:

6–18% DW) [66], in the ascidian Cnemidocarpa verrucosa (protein: 5.9–18% DW, lipid: 4.9–

16.1% DW) [67] and in the nemertean Parborlasia corrugatus (protein: 17.9–36% DW, lipid:

7.9–13.8% DW) [65].
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In the case of N. inaequisculpta, the biochemical composition and energy content showed a

peculiar result in the site MC3. Individuals of the MC3 site have a similar biochemical content

to individuals of the other sites in 4 mg of dry weight, but when considering the total weight

(ca. 10 mg), individuals of the site MC3 double their biochemical content relative to individu-

als from other sampling sites. This result could be related to an underwater sill found recently

at the MC3 site using bathymetry multibeam equipment [86]. In biological terms, this under-

water sill could be acting as a food retainer, allowing N. inaequisculpta individuals to invest a

greater amount of energy in soft tissue growth due to a greater amount of available food.

The biochemical composition and energy content of N. inaequisculpta individuals within

the fjord was higher in the farthest than in the nearest sites to the glacier (Figs 5 and 6), display-

ing an interesting spatial variation that to our knowledge has not previously been found in

Antarctic marine bivalves. Concordantly, a recent study that evaluated the biochemical com-

position of the Antarctic polychaetes Maldane sarsi antarctica and Notomastus latericeus, also

found higher amount of lipids and proteins at the farther sites to the melting glacier in coastal

fjords [87]. Further, another study evaluating the impact of regional warming on the biochem-

ical composition of the sediments (lipids, proteins and carbohydrates) found that sediments

from sites with a recent ice-loss have a lower lipid and protein content and higher amount of

carbohydrates compared to sites with an ancient ice loss [10]. By one hand, this could be evi-

dence that new habitats formed by the retreat of glaciers (recently exposed sites) would be still

unstable environments with low amounts of available energy that can only sustain a benthic

Table 2. Biochemical composition (lipid and protein, % dry weight) recorded in marine bivalve species of different regions.

Species Region Data period Lipid (%DW) Protein (%DW) References

N. inaequiscupta Antarctic Late spring 12.2–17.1 21.1–25.8a This study

Laternula elliptica Antarctic Summer ca. 8.20 n/a [68]

Antarctic Late spring 6.0–18.0 60.0–85.0b [69]

Aequiyoldia eightsii Antarctic Summer 4.60–8.30 13.1–22.3a Unpublished data

Nucula sulcata Sub-arctic Late spring 6.69–6.77 9.72–9.95c [70]

Nucula turgida Sub-arctic Late spring 13.0–15.0 60.0–66.0b [71]

Abra alba Sub-arctic Late spring 4.66–5.56 8.88–9.40c [72]

Chlamys septemradiata Sub-arctic Late spring 5.89–13.1 9.51–13.8c [73]

Lima hians Sub-arctic Late spring 5.31–7.36 8.10–10.5c [74]

Astarte montagui Sub-arctic Late spring 4.12–5.58 9.35–9.97c [75]

Mytilus edulis Sub-arctic Spring 5.00–6.00 50.0–60.0b [76]

Mytilus galloprovincialis Temperate Late spring 1.35 11.1b [77]

Temperate Summer 6.27 49.5b [78]

Temperate Late spring 1.60 9.70b [79]

Temperate Late spring 1.84 8.78a [80]

Tapes decussatus Temperate Late spring 1.61 10.9b [81]

Tapes philippinarum Temperate Late spring 1.33 10.5b [81]

Crassostrea gigas Temperate Spring 7.33 ca. 16.0a [82]

Temperate Spring 8.00 40.5a [83]

Ostrea edulis Temperate Spring 6.90 38.9a [83]

Mactra chinensis Temperate Spring 1.50–22.0 16.1–43.4d [84]

Fulvia mutica Temperate Spring ca. 7.50 ca. 55.0b [85]

a = protein data through Lowry method
b = protein data through Kjeldhal method
c = estimation of nitrogen content; n/a: not available.

https://doi.org/10.1371/journal.pone.0233513.t002

PLOS ONE The influence of glacial melt and retreat on the nutritional condition of the bivalve Nuculana inaequisculpta

PLOS ONE | https://doi.org/10.1371/journal.pone.0233513 May 21, 2020 15 / 23

https://doi.org/10.1371/journal.pone.0233513.t002
https://doi.org/10.1371/journal.pone.0233513


community at early stages of the colonization process [12,88]. By the other hand, the presence

of infaunal species could shed lights on the important role they play at new blue carbon sinks

due to glaciers melting and retreat [89].

Fatty acids are lipid components that can provide high amounts of energy, compared to

amino acids for example, by being oxidized, and are also part of membranes as well as other

cellular structures and pathways [90]. Especially, polyunsaturated fatty acids (PUFA) fulfill

vital functions in organisms, for instance, in the development of the nervous system [91],

immune responses [92,93], growth [94] and as precursors of eicosanoids that are important

for cellular processes [95]. Certain marine organisms do not have the ability to obtain these

fatty acids de novo, so certain types of PUFAs, such as eicosapenaenoic acid (EPA; C20: 5n-3),

DHA (C22: 6n-3) and arachidonic acid (ARA; C20: 4n- 6) are considered essential fatty acids

because they can only be obtained through the intake of food [90]. However, recent studies

indicate that some molluscs species, including bivalves, have the ability to synthesize some

fatty acids due to the presence of specialized enzymes [96]. In this context, it would be impor-

tant that future studies can answer this question, especially in the Antarctic ecosystem where

these topics are not well understood.

Numerous studies have used fatty acids biomarkers in Antarctic species, mainly focusing

on revealing the species’ trophic ecology [97,98,99,100]. According to the presence of certain

fatty acids found in this study and using biomarkers of fatty acids available in the literature, we

suggest that N. inaequisculpta have an omnivorous feeding behavior (Table 3). On the other

hand, there is a lack of studies on fatty acids as nutritional condition proxies of Antarctic

marine invertebrates. In the present work, N. inaequisculpta did not display significant differ-

ences in its proportions of total fatty acids (i.e. saturated, monounsaturated and polyunsatu-

rated) among the studied sites along the fjord, which indicates a similar nutritional quality for

the whole fjord. Then, the low amount of food available in the sediment could be the most

likely cause of the observed pattern for the biochemical composition, as mentioned above.

The nutritional status of adults has a direct effect on reproduction, offspring success, stabil-

ity of populations, and resilience of species in ecosystems [105]. Better nutritional condition of

adults can be reflected in a higher investment of maternal energy in offspring and hence an

immediate initial source of intraspecific variability [105], which will subsequently translate

into cascading effects throughout a specimens’ life-cycle [106]. One aspect widely studied in

marine invertebrates has been the successful development of gametes. In this context, it has

been observed that individuals fed with diets of higher nutritional quality produce larger and

better-quality gametes [107]. After fertilization, the produced larvae also had a better energetic

quality, lower nutritional vulnerability, better ability to resist environmental changes, and

therefore higher survival rates [108]. On the contrary, if parental individuals did not invest a

sufficient amount of proteins, lipids, and fatty acids in their offspring, mortality was likely to

increase, and malformations were more likely to occur during the development of the off-

spring, making them non-viable [105]. Therefore, individuals who are closer to melting gla-

ciers, and who show a lower nutritional condition, could produce offspring with a higher

nutritional vulnerability, reflected in decreased larval survival and population instability.

Conclusions

Oceanographic data measured in this study showed spatial differences among study sites that

could be related with the glacier melting. Also, oceanographic data were within the natural

environment ranges described previously for the WAP for different temporal scales, suggesting

no effect on the physiology or biology of N. inaequisculpta at the moment of sampling. On the

other hand, individuals of this species display a spatial variation in the nutritional condition at
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different distances to the glacier. Specimens that lived in the nearest site to the glacier had a

worse nutritional condition than individuals who lived in the farthest site to the glacier, likely

related with the quantity not quality of food in sediments. Meanwhile, the higher fitness within

the fjord, due to higher biomass of dry tissue, of this species is likely found at the intermediate

site of the melting glacier transect. Thus, individuals who live near the glacier will likely have

less reproductive success, less larval survival, and therefore a more unstable population. This

could further lead to a decreased recycling capacity of nutrients by benthic species and, addi-

tionally, a negative effect on the carbon cycle in the WAP system.
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