348 research outputs found

    Molecular Genetic Analysis of the ABO Blood Group System: 1. Weak Subgroups: A 3 and B 3 Alleles

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71979/1/j.1423-0410.1993.tb05157.x.pd

    Optics Testing at Planetary Scale

    Get PDF
    Each and every telescope that ships inside a Planet Dove or Superdove goes through a vigorous testing procedure. These tests are designed so that the user does not have to be an expert to run the test, or to interpret the results. All of our optics tests can be run either at the satellite level, or at the bare telescope level. This gives us maximum flexibility during the manufacturing process

    Phase diagrams, critical and multicritical behavior of hard-core Bose-Hubbard models

    Full text link
    We determine the zero-temperature phase diagram of the hard-core Bose-Hubbard model on a square lattice by mean-field theory supplemented by a linear spin-wave analysis. Due to the interplay between nearest and next-nearest neighbor interaction and cubic anisotropy several supersolid phases with checkerboard, stripe domain or intermediate symmetry are stabilized. The phase diagrams show three different topologies depending on the relative strength of nearest and next-nearest neighbor interaction. We also find a rich variety of new quantum critical behavior and multicritical points and discuss the corresponding effective actions and universality classes.Comment: 19 pages, ReVTeX, 18 figures included, submitted to PR

    A Simple and Robust Single-Step Method for CAR-Vδ1 γδT Cell Expansion and Transduction for Cancer Immunotherapy

    Get PDF
    The γδT cell subset of peripheral lymphocytes exhibits potent cancer antigen recognition independent of classical peptide MHC complexes, making it an attractive candidate for allogeneic cancer adoptive immunotherapy. The Vδ1-T cell receptor (TCR)-expressing subset of peripheral γδT cells has remained enigmatic compared to its more prevalent Vγ9Vδ2-TCR and αβ-TCR-expressing counterparts. It took until 2021 before a first patient was dosed with an allogeneic adoptive Vδ1 cell product despite pre-clinical promise for oncology indications stretching back to the 1980s. A contributing factor to the paucity of clinical progress with Vδ1 cells is the lack of robust, consistent and GMP-compatible expansion protocols. Herein we describe a reproducible one-step, clinically translatable protocol for Vδ1-γδT cell expansion from peripheral blood mononuclear cells (PBMCs), that is further compatible with high-efficiency gene engineering for immunotherapy purposes. Briefly, αβTCR- and CD56-depleted PBMC stimulation with known-in-the-art T cell stimulators, anti-CD3 mAb (clone: OKT-3) and IL-15, leads to robust Vδ1 cell expansion of high purity and innate-like anti-tumor efficacy. These Vδ1 cells can be virally transduced to express chimeric antigen receptors (CARs) using standard techniques, and the CAR-Vδ1 exhibit antigen-specific persistence, cytotoxicity and produce IFN-γ. Practicable, GMP-compatible engineered Vδ1 cell expansion methods will be crucial to the wide-spread clinical testing of these cells for oncology indications

    Simultaneous Diagonal and Off Diagonal Order in the Bose--Hubbard Hamiltonian

    Full text link
    The Bose-Hubbard model exhibits a rich phase diagram consisting both of insulating regimes where diagonal long range (solid) order dominates as well as conducting regimes where off diagonal long range order (superfluidity) is present. In this paper we describe the results of Quantum Monte Carlo calculations of the phase diagram, both for the hard and soft core cases, with a particular focus on the possibility of simultaneous superfluid and solid order. We also discuss the appearance of phase separation in the model. The simulations are compared with analytic calculations of the phase diagram and spin wave dispersion.Comment: 28 pages plus 24 figures, uuencoded Revtex+postscript file

    Quantum plasticity and dislocation-induced supersolidity

    Get PDF
    We suggest that below a certain temperature T_k, the free energy for the creation of kinks-antikinks pairs in the dislocation network of solid He4 becomes negative. The underlying physical mechanism is the related liberation of vacancies which initiate Feynman's permutation cycles in the bulk. Consequently, dislocations should wander and sweep an increasingly larger volume at low temperatures. This phenomenon should lead both to a stiffening of the solid below T_k and to the appearance of a non zero superfluid fraction at a second temperature T_c < T_k.Comment: Longer revised version with more detailed discussion, submitted to EPJ

    Interstitials, Vacancies, and Supersolid Order in Vortex Crystals

    Full text link
    Interstitials and vacancies in the Abrikosov phase of clean Type II superconductors are line imperfections, which cannot extend across macroscopic equilibrated samples at low temperatures. We argue that the entropy associated with line wandering nevertheless can cause these defects to proliferate at a sharp transition which will exist if this occurs below the temperature at which the crystal actually melts. Vortices are both entangled and crystalline in the resulting ``supersolid'' phase, which in a dual ``boson'' analog system is closely related to a two-dimensional quantum crystal of He4^4 with interstitials or vacancies in its ground state. The supersolid {\it must} occur for B≫B×B\gg B_\times, where B×B_\times is the decoupling field above which vortices begin to behave two-dimensionally. Numerical calculations show that interstitials, rather than vacancies, are the preferred defect for B≫ϕ0/λ⊥2B\gg \phi_0/\lambda_\perp^2, and allow us to estimate whether proliferation also occurs for B\,\lot\,B_\times.The implications of the supersolid phase for transport measurements, dislocation configurations and neutron diffraction are discussed.Comment: 53 pages and 15 figures, available upon request, written in plain TE

    Phase separation in supersolids

    Full text link
    We study quantum phase transitions in the ground state of the two dimensional hard-core boson Hubbard Hamiltonian. Recent work on this and related models has suggested ``supersolid'' phases with simultaneous diagonal and off-diagonal long range order. We show numerically that, contrary to the generally held belief, the most commonly discussed ``checkerboard'' supersolid is thermodynamically unstable. Furthermore, this supersolid cannot be stabilized by next near neighbour interaction. We obtain the correct phase diagram using the Maxwell construction. We demonstrate the ``striped'' supersolid is thermodynamically stable and is separated from the superfluid phase by a continuous phase transition.Comment: 4 pages, 4 eps figures, include
    • …
    corecore