42 research outputs found

    Determination of the photodisintegration reaction rates involving charged particles: systematical calculations and proposed measurements based on Extreme Light Infrastructure - Nuclear Physics (ELI-NP)

    Full text link
    Photodisintegration reaction rates involving charged particles are of relevance to the p-process nucleosynthesis that aims at explaining the production of the stable neutron-deficient nuclides heavier than iron. In this study, the cross sections and astrophysical rates of (g,p) and (g,a) reactions for about 3000 target nuclei with 10<Z<100 ranging from stable to proton dripline nuclei are computed. To study the sensitivity of the calculations to the optical model potentials (OMPs), both the phenomenological Woods-Saxon and the microscopic folding OMPs are taken into account. The systematic comparisons show that the reaction rates, especially for the (g,a) reaction, are dramatically influenced by the OMPs. Thus the better determination of the OMP is crucial to reduce the uncertainties of the photodisintegration reaction rates involving charged particles. Meanwhile, a gamma-beam facility at ELI-NP is being developed, which will open new opportunities to experimentally study the photodisintegration reactions of astrophysics interest. Considering both the important reactions identified by the nucleosynthesis studies and the purpose of complementing the experimental results for the reactions involving p-nuclei, the measurements of six (g,p) and eight (g,a) reactions based on the gamma-beam facility at ELI-NP and the ELISSA detector for the charged particles detection are proposed, and the GEANT4 simulations are correspondingly performed. The minimum required energies of the gamma-beam to measure these reactions are estimated. It is shown that the direct measurements of these photonuclear reactions within the Gamow windows at T_9=2.5 for p-process are fairly feasible and promising at ELI-NP. The expected experimental results will be used to constrain the OMPs of the charged particles, which can eventually reduce the uncertainties of the reaction rates for the p-process nucleosynthesis.Comment: 14 pages, 8 figures, Phys. Rev. C accepte

    A next generation measurement of the electric dipole moment of the neutron at the FRM II

    Get PDF
    In this paper we discuss theoretical motivations and the status of experimental searches to find time-reversal symmetry-violating electric dipole moments (EDM). Emphasis is given to a next generation search for the EDM of the neutron, which is currently being set up at the FRM II neutron source in Garching, with an ultimate sensitivity goal of 5 × 10−28 cm (3σ). The layout of the apparatus allows for the detailed investigation of systematic effects by combining various means of magnetic field control and polarized UCN optics. All major components of the installations are portable and can be installed at the strongest available UCN beam

    Losses and depolarization of ultracold neutrons on neutron guide and storage materials

    Get PDF
    At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to ∼460s were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, η, varied between 1.0×10−4 and 2.2×10−4. All η values are in agreement with theory except for dPS, where anomalous losses at room temperature were established with four standard deviations. The depolarization probabilities per wall collision β measured with unprecedented sensitivity varied between 0.7×10−6 and 9.0×10−6. Our depolarization result for copper differs from other experiments by 4.4 and 15.8 standard deviations. The β values of the paramagnetic NiMo alloys over molybdenum content show an increase of β with increasing Mo content. This is in disagreement with expectations from literature. Finally, ferromagnetic behavior of NiMo alloys at room temperature was found for molybdenum contents of 6.5 at.% or less and paramagnetic behavior for more than 8.7 at.%. This may contribute to solving an ambiguity in literature

    Investigation of Compton scattering for gamma beam intensity measurements and perspectives at ELI-NP

    Get PDF
    Compton γ-ray sources have been in operation for over 30 years with new facilities being under construction or proposed. The gamma beam system under implementation at the Extreme Light Infrastructure - Nuclear Physics facility in Romania will deliver brilliant γ-ray beams with energies up to 19.5 MeV. Several instruments for measuring the parameters of the γ-ray beam are under development at ELI-NP. One of these instruments based on a High Purity Germanium detector is routinely used for beam energy measurements at other facilities. Here we investigate the use of a High Purity Germanium detector to continuously monitor the intensity of the ELI-NP gamma beam by measuring the inelastic scattering of photons. This method relies on both experimental and simulated data and it has been successfully tested during a recent experiment at the High Intensity γ-ray Source facility

    SDR, EVC, and SDREVC: Limitations and Extensions

    Full text link
    Methods for reducing the radius, temperature, and space charge of nonneutral plasma are usually reported for conditions which approximate an ideal Penning Malmberg trap. Here we show that (1) similar methods are still effective under surprisingly adverse circumstances: we perform SDR and SDREVC in a strong magnetic mirror field using only 3 out of 4 rotating wall petals. In addition, we demonstrate (2) an alternative to SDREVC, using e-kick instead of EVC and (3) an upper limit for how much plasma can be cooled to T < 20 K using EVC. This limit depends on the space charge, not on the number of particles or the plasma density.Comment: Version 2: a small discrepancy between the N values for Table 1 and Fig. 3 led to an investigation of the charge counting diagnostic. There is a small energy dependence which only became apparent following improvements to pre-SDREVC. The pulsed dump was modified to reduce this dependence. The data for Table 1 and Fig. 3 was taken again with the improved method

    SDR, EVC, and SDREVC: Limitations and Extensions

    Get PDF
    Methods for reducing the radius, temperature and space charge of a non-neutral plasma are usually reported for conditions which approximate an ideal Penning Malmberg trap. Here, we show that (i) similar methods are still effective under surprisingly adverse circumstances: we perform strong drive regime (SDR) compression and SDREVC in a strong magnetic mirror field using only 3 out of 4 rotating wall petals. In addition, we demonstrate (ii) an alternative to SDREVC, using e-kick instead of evaporative cooling (EVC) and (iii) an upper limit for how much plasma can be cooled to T &lt; 20 K using EVC. This limit depends on the space charge, not on the number of particles or the plasma density

    Upgrade of the positron system of the ASACUSA-Cusp experiment

    Full text link
    The ASACUSA-Cusp collaboration has recently upgraded the positron system to improve the production of antihydrogen. Previously, the experiment suffered from contamination of the vacuum in the antihydrogen production trap due to the transfer of positrons from the high pressure region of a buffer gas trap. This contamination reduced the lifetime of antiprotons. By adding a new positron accumulator and therefore decreasing the number of transfer cycles, the contamination of the vacuum has been reduced. Further to this, a new rare gas moderator and buffer gas trap, previously used at the Aarhus University, were installed. Measurements from Aarhus suggested that the number of positrons could be increased by a factor of four in comparison to the old system used at CERN. This would mean a reduction of the time needed for accumulating a sufficient number of positrons (of the order of a few million) for an antihydrogen production cycle. Initial tests have shown that the new system yields a comparable number of positrons to the old system.Comment: 10 pages, 5 figures, under consideration for the Special Collection "Non-Neutral Plasmas: Achievements and Perspectives" in JP

    Slow positron production and storage for the ASACUSA-Cusp experiment

    Get PDF
    The ASACUSA (atomic spectroscopy and collisions using slow antiprotons) Cusp experiment requires the production of dense positron plasmas with a high repetition rate to produce a beam of antihydrogen. In this work, details of the positron production apparatus used for the first observation of the antihydrogen beam, and subsequent measurements, are described in detail. This apparatus replaced the previous compact trap design resulting in an improvement in the positron accumulation rate by a factor of 52 +/- 3

    Slow positron production and storage for the ASACUSA-Cusp experiment

    Full text link
    The ASACUSA Cusp experiment requires the production of dense positron plasmas with a high repetition rate to produce a beam of antihydrogen. In this work, details of the positron production apparatus used for the first observation of the antihydrogen beam, and subsequent measurements are described in detail. This apparatus replaced the previous compact trap design resulting in an improvement in positron accumulation by a factor of (52±3)52\pm3)Comment: 9 pages, 7 figure

    Minimizing plasma temperature for antimatter mixing experiments

    Get PDF
    The ASACUSA collaboration produces a beam of antihydrogen atoms by mixing pure positron and antiproton plasmas in a strong magnetic field with a double cusp geometry. The positrons cool via cyclotron radiation inside the cryogenic trap. Low positron temperature is essential for increasing the fraction of antihydrogen atoms which reach the ground state prior to exiting the trap. Many experimental groups observe that such plasmas reach equilibrium at a temperature well above the temperature of the surrounding electrodes. This problem is typically attributed to electronic noise and plasma expansion, which heat the plasma. The present work reports anomalous heating far beyond what can be attributed to those two sources. The heating seems to be a result of the axially open trap geometry, which couples the plasma to the external (300 K) environment via microwave radiation
    corecore