158 research outputs found

    Plant infection by two different viruses induce contrasting changes of vectors fitness and behavior

    Get PDF
    Abstract Insect-vectored plant viruses can induce changes in plant phenotypes, thus influencing plant?vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e., circulative vs. noncirculative). This indirect vector manipulation requires host?virus?vector coevolution and would thus be effective solely in very specific plant?virus?vector species associations. Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency. In anintegrative study, we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV) or the circulative Turnip yellows virus (TuYV) on the host-plant colonization of two aphid species differing in their virus transmission efficiency: the polyphagous Myzus persicae, efficient vector of both viruses, and the Brassicaceae specialist Brevicoryne brassicae, poor vector of TuYV and efficient vector of CaMV. Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e., decreased phloem sap ingestion) and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition. In addition, virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV, that is, enhanced feeding behavior and performances, were favorable to their acquisition and further dispersal. Altogether, this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses. Our results also reinforce the idea that vector manipulation requires coevolution between plant, virus and vector

    Virus effects on plant quality and vector behavior are species specific and do not depend on host physiological phenotype

    Get PDF
    There is growing evidence that plant viruses manipulate host plants to increase transmission-conducive behaviors by vectors. Reports of this phenomenon frequently include only highly susceptible, domesticated annual plants as hosts, which constrains our ability to determine whether virus effects are a component of an adaptive strategy on the part of the pathogen or simply by-products of pathology. Here, we tested the hypothesis that transmission-conducive effects of a virus (Turnip yellows virus [TuYV]) on host palatability and vector behavior (Myzus persicae) are linked with host plant tolerance and physiological phenotype. Our study system consisted of a cultivated crop, false flax (Camelina sativa) (Brassicales: Brassicaceae), a wild congener (C. microcarpa), and a viable F1 hybrid of these two species. We found that the most tolerant host (C. microcarpa) exhibited the most transmission-conducive changes in phenotype relative to mock-inoculated healthy plants: Aphids preferred to settle and feed on TuYV-infected C. microcarpa and did not experience fitness changes due to infection—both of which will increase viruliferous aphid numbers. In contrast, TuYV induced transmission-limiting phenotypes in the least tolerant host (C. sativa) and to a greater degree in the F1 hybrid, which exhibited intermediate tolerance to infection. Our results provide no evidence that virus effects track with infection tolerance or physiological phenotype. Instead, vector preferences and performance are driven by host-specific changes in carbohydrates under TuYV infection. These results provide evidence that induction of transmission-enhancing phenotypes by plant viruses is not simply a by-product of general pathology, as has been proposed as an explanation for putative instances of parasite manipulation by viruses and many other taxa

    Maternal Risk of Breeding Failure Remained Low throughout the Demographic Transitions in Fertility and Age at First Reproduction in Finland

    Get PDF
    Radical declines in fertility and postponement of first reproduction during the recent human demographic transitions have posed a challenge to interpreting human behaviour in evolutionary terms. This challenge has stemmed from insufficient evolutionary insight into individual reproductive decision-making and the rarity of datasets recording individual long-term reproductive success throughout the transitions. We use such data from about 2,000 Finnish mothers (first births: 1880s to 1970s) to show that changes in the maternal risk of breeding failure (no offspring raised to adulthood) underlay shifts in both fertility and first reproduction. With steady improvements in offspring survival, the expected fertility required to satisfy a low risk of breeding failure became lower and observed maternal fertility subsequently declined through an earlier age at last reproduction. Postponement of the age at first reproduction began when this risk approximated zero–even for mothers starting reproduction late. Interestingly, despite vastly differing fertility rates at different stages of the transitions, the number of offspring successfully raised to breeding per mother remained relatively constant over the period. Our results stress the importance of assessing the long-term success of reproductive strategies by including measures of offspring quality and suggest that avoidance of breeding failure may explain several key features of recent life-history shifts in industrialized societies

    The French Didactic Tradition in Mathematics

    Get PDF
    This chapter presents the French didactic tradition. It first describes theemergence and development of this tradition according to four key features (role ofmathematics and mathematicians, role of theories, role of design of teaching andlearning environments, and role of empirical research), and illustrates it through two case studies respectively devoted to research carried out within this traditionon algebra and on line symmetry-reflection. It then questions the influence of thistradition through the contributions of four researchers from Germany, Italy, Mexicoand Tunisia, before ending with a short epilogue

    Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania.

    Get PDF
    Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection
    corecore