37 research outputs found

    Pathway-based subnetworks enable cross-disease biomarker discovery.

    Get PDF
    Biomarkers lie at the heart of precision medicine. Surprisingly, while rapid genomic profiling is becoming ubiquitous, the development of biomarkers usually involves the application of bespoke techniques that cannot be directly applied to other datasets. There is an urgent need for a systematic methodology to create biologically-interpretable molecular models that robustly predict key phenotypes. Here we present SIMMS (Subnetwork Integration for Multi-Modal Signatures): an algorithm that fragments pathways into functional modules and uses these to predict phenotypes. We apply SIMMS to multiple data types across five diseases, and in each it reproducibly identifies known and novel subtypes, and makes superior predictions to the best bespoke approaches. To demonstrate its ability on a new dataset, we profile 33 genes/nodes of the PI3K pathway in 1734 FFPE breast tumors and create a four-subnetwork prediction model. This model out-performs a clinically-validated molecular test in an independent cohort of 1742 patients. SIMMS is generic and enables systematic data integration for robust biomarker discovery

    Mutational Analysis of PI3K/AKT Signaling Pathway in Tamoxifen Exemestane Adjuvant Multinational Pathology Study

    No full text
    Purpose Deregulation of key PI3K/AKT pathway genes may contribute to endocrine resistance in breast cancer (BC). PIK3CA is the most frequently mutated gene in luminal BC (similar to 35%); however, the effect of mutations in helical versus kinase domains remains controversial. We hypothesize that improved outcomes occur in patients with estrogen receptor-positive (ER positive) BC receiving endocrine therapy and possessing PIK3CA mutations. Materials and Methods DNA was extracted from 4,540 formalin-fixed paraffin-embedded BC samples from the Exemestane Versus Tamoxifen-Exemestane pathology study. Mutational analyses were performed for 25 mutations (PIK3CAx10, AKT1x1, KRASx5, HRASx3, NRASx2 and BRAFx4). Results PIK3CA mutations were frequent (39.8%), whereas RAS/RAF mutations were rare (<1%). In univariable analyses PIK3CA mutations were associated with significantly improved 5-year distant relapse-free survival (DRFS; HR, 0.76; 95% CI, 0.63 to 0.91; P = .003). However, a multivariable analysis correcting for known clinical and biologic prognostic factors failed to demonstrate that PIK3CA mutation status is an independent prognostic marker for DRFS (HR, 0.92; 95% CI, 0.75 to 1.12; P = .4012). PIK3CA mutations were more frequent in low-risk luminal BCs (eg, grade 1 node v 3, node-negative v-positive), confounding the relationship between mutations and outcome. Conclusion PIK3CA mutations are present in approximately 40% of luminal BCs but are not an independent predictor of outcome in the context of endocrine therapy, whereas RAS/RAF mutations are rare in luminal BC. A complex relationship between low-risk cancers and PIK3CA mutations was identified. Although the PI3K/AKT pathway remains a viable therapeutic target as the result of a high mutation frequency, PIK3CA mutations do not seem to affect residual risk following treatment with endocrine therapy. (C) 2014 by American Society of Clinical Oncolog

    An updated end-to-end ecosystem model of the Northern California Current reflecting ecosystem changes due to recent marine heatwaves.

    No full text
    The Northern California Current is a highly productive marine upwelling ecosystem that is economically and ecologically important. It is home to both commercially harvested species and those that are federally listed under the U.S. Endangered Species Act. Recently, there has been a global shift from single-species fisheries management to ecosystem-based fisheries management, which acknowledges that more complex dynamics can reverberate through a food web. Here, we have integrated new research into an end-to-end ecosystem model (i.e., physics to fisheries) using data from long-term ocean surveys, phytoplankton satellite imagery paired with a vertically generalized production model, a recently assembled diet database, fishery catch information, species distribution models, and existing literature. This spatially-explicit model includes 90 living and detrital functional groups ranging from phytoplankton, krill, and forage fish to salmon, seabirds, and marine mammals, and nine fisheries that occur off the coast of Washington, Oregon, and Northern California. This model was updated from previous regional models to account for more recent changes in the Northern California Current (e.g., increases in market squid and some gelatinous zooplankton such as pyrosomes and salps), to expand the previous domain to increase the spatial resolution, to include data from previously unincorporated surveys, and to add improved characterization of endangered species, such as Chinook salmon (Oncorhynchus tshawytscha) and southern resident killer whales (Orcinus orca). Our model is mass-balanced, ecologically plausible, without extinctions, and stable over 150-year simulations. Ammonium and nitrate availability, total primary production rates, and model-derived phytoplankton time series are within realistic ranges. As we move towards holistic ecosystem-based fisheries management, we must continue to openly and collaboratively integrate our disparate datasets and collective knowledge to solve the intricate problems we face. As a tool for future research, we provide the data and code to use our ecosystem model

    Subregional heatmaps of functional group spatial distributions.

    No full text
    Each functional group was broken out into the 15 subregions via survey data, fisheries landings data, or species distribution models (see Methods), or distributional assumptions when there was a lack of available information. The color of each subregional cell is a gradient denoting the proportion of biomass (for each functional group) that is within each subregional cell (with red being the highest and pale yellow being the lowest proportions, respectively). The proportion of biomass in each subregion sums to 1 across all subregions. See “SubRegions/” in supplemental data and code to reproduce this plot, and for plots of all functional groups). Adult Chinook, common murre, and sooty shearwater distributions are based off of the juvenile salmon and ocean ecosystem survey (JSOES); hake distributions are from the hake acoustic trawl survey; herring, jack mackerel, and sardine distributions are from the coastal pelagic species (CPS) acoustic trawl survey; and Southern resident killer whale (SRKW) distributions are based off of movement data from satellite-tagged Southern resident killer whales [130]. State outline data comes from US Department of Commerce, Census Bureau, Cartographic Boundary Files.</p

    Invertebrate functional group time series as both ecosystem model output and independent estimates.

    No full text
    Independently derived estimates (blue points; blue lines = locally estimated scatterplot smoothing lines) of relative biomass via a Juvenile Salmon and Ocean Ecosystem Survey (JSOES; large jellies), fisheries landings (small cephalopod aggregate = market squid), and a pre-season abundance model (Dungeness crabs [83]) are plotted against ecosystem model-derived estimates of matching functional groups (black lines). The ecosystem model is driven entirely by nutrient inputs to the system as determined by the coastal upwelling transport index (CUTI) [42] and trophic relationships, and any resemblance of the two time series is an indication that the ecosystem model is matching independently-observed dynamics.</p

    Data sources and years included.

    No full text
    The table contains information about the sources of both the biomass and diet data for each functional group (rows of table) in the model. See https://doi.org/10.5281/zenodo.7079777 for a csv version of this table. (CSV)</p

    Fishery discards for each functional group.

    No full text
    The table contains information about the yearly discards (mt/km2) of each fishery in the model (columns in table; see Table 2 for descriptions) for each living functional group (rows of table) in the model. See https://doi.org/10.5281/zenodo.7079777 for a csv version of this table and see Table 1, S2–S5 Tables for other ecosystem model parameters. (CSV)</p
    corecore