722 research outputs found

    Intracerebral Hemorrhage and Ischemic Stroke of Different Etiologies Have Distinct Alternatively Spliced mRNA Profiles in the Blood: a Pilot RNA-seq Study.

    Get PDF
    Whole transcriptome studies have used 3'-biased expression microarrays to study genes regulated in the blood of stroke patients. However, alternatively spliced messenger RNA isoforms have not been investigated for ischemic stroke or intracerebral hemorrhage (ICH) in animals or humans. Alternative splicing is the mechanism whereby different combinations of exons of a single gene produce distinct mRNA and protein isoforms. Here, we used RNA sequencing (RNA-seq) to determine if alternative splicing differs for ICH and cardioembolic, large vessel and lacunar causes of ischemic stroke compared to controls. RNA libraries from 20 whole blood samples were sequenced to 200 M 2 × 100 bp reads using Illumina sequencing-by-synthesis technology. Differential alternative splicing was assessed using one-way analysis of variance (ANOVA), and differential exon usage was calculated. Four hundred twelve genes displayed differential alternative splicing among the groups (false discovery rate, FDR; p < 0.05). They were involved in cellular immune response, cell death, and cell survival pathways. Distinct expression signatures based on usage of 308 exons (292 genes) differentiated the groups (p < 0.0005; fold change >|1.2|). This pilot study demonstrates that alternatively spliced genes from whole blood differ in ICH compared to ischemic stroke and differ between different ischemic stroke etiologies. These results require validation in a separate cohort

    KLB dysregulation mediates disrupted muscle development in intrauterine growth restriction

    Get PDF
    ABSTRACT: Intrauterine growth restriction (IUGR) is a leading cause of neonatal morbidity and mortality in humans and domestic animals. Developmental adaptations of skeletal muscle in IUGR lead to increased risk of premature muscle loss and metabolic disease in later life. Here, we identified β‐Klotho (KLB), a fibroblast growth factor 21 (FGF21) co‐receptor, as a novel regulator of muscle development in IUGR. Using the pig as a naturally‐occurring disease model, we performed transcriptome‐wide profiling of fetal muscle (day 90 of pregnancy) from IUGR and normal‐weight (NW) littermates. We found that, alongside large‐scale transcriptional changes comprising multiple developmental, tissue injury and metabolic gene pathways, KLB was increased in IUGR muscle. Moreover, FGF21 concentrations were increased in plasma in IUGR fetuses. Using cultures of fetal muscle progenitor cells (MPCs), we showed reduced myogenic capacity of IUGR compared to NW muscle in vitro, as evidenced by differences in fusion indices and myogenic transcript levels, as well as mechanistic target of rapamycin (mTOR) activity. Moreover, transfection of MPCs with KLB small interfering RNA promoted myogenesis and mTOR activation, whereas treatment with FGF21 had opposite and dose‐dependent effects in porcine and also in human fetal MPCs. In conclusion, our results identify KLB as a novel and potentially critical mediator of impaired muscle development in IUGR, through conserved mechanisms in pigs and humans. Our data shed new light onto the pathogenesis of IUGR, a significant cause of lifelong ill‐health in humans and animals. KEY POINTS: Intrauterine growth restriction (IUGR) is associated with large‐scale transcriptional changes in developmental, tissue injury and metabolic gene pathways in fetal skeletal muscle. Levels of the fibroblast growth factor 21 (FGF21) co‐receptor, β‐Klotho (KLB) are increased in IUGR fetal muscle, and FGF21 concentrations are increased in IUGR fetal plasma. KLB mediates a reduction in muscle development through inhibition of mechanistic target of rapamycin signalling. These effects of KLB on muscle cells are conserved in pig and human, suggesting a vital role of this protein in the regulation of muscle development and function in mammals

    The Crystal Structure of a Cyanobacterial Water-Soluble Carotenoid Binding Protein

    Get PDF
    AbstractCarotenoids undergo a wide range of photochemical reactions in animal, plant, and microbial systems. In photosynthetic organisms, in addition to light harvesting, they perform an essential role in protecting against light-induced damage by quenching singlet oxygen, superoxide anion radicals, or triplet-state chlorophyll. We have determined the crystal structure of a water-soluble orange carotenoid protein (OCP) isolated from the cyanobacterium Arthrospira maxima at a resolution of 2.1 Å. OCP forms a homodimer with one carotenoid molecule per monomer. The carotenoid binding site is lined by a striking number of methionine residues. The structure reveals several possible ways in which the protein environment influences the spectral properties of the pigment and provides insight into how the OCP carries out its putative functions in photoprotection

    The 2021 MW 6.2 Mamuju, West Sulawesi, Indonesia earthquake: partial rupture of the Makassar Strait thrust

    Get PDF
    On the 2021 January 15 (local date), an MW 6.2 earthquake struck the Mamuju and Majene regions of West Sulawesi, Indonesia. This event killed more than 100 inhabitants, leaving at least 30 000 people displaced from their homes, and damaged almost 8000 buildings within a radius of ∼30 km from the main shock's epicentre location (as shown on our damage proxy map). This event was generated by an active fault that continues to the Makassar Strait Thrust (MST) offshore West Sulawesi. The hazard potential of this fault remains poorly understood. In this study, we use seismic and Global Positioning System (GPS) data to investigate the source characteristics of the main shock. The results suggest that the main shock partially ruptured one segment of the MST, activated a secondary fault structure, and likely brought the updip unruptured section of the MST segment closure to failure. Our analysis of interseismic GPS velocities indicates that the Mamuju and Majene regions have a higher crustal strain rate than other nearby regions. The results (partial rupture of the MST segment, the updip unruptured section of the MST and high strain rate in the Mamuju and Majene regions) together suggest a significant seismic hazard potential in West Sulawesi, particularly in the Mamuju and Majene areas.Ministry of Education (MOE)National Research Foundation (NRF)Published versionIM is supported by RISPRO LPDP Indonesia Endowment Fund for Education S-303/LPDP.4/2022. SR is supported by the Indonesian Ministry of Research, Technology, and Higher Education through a scholarship program of ‘Pendidikan Magister Menuju Doktor Untuk Sarjana Unggul (PMDSU) Batch IV (2018)’. RS, KL, KB, CT and S-HY are supported by the Earth Observatory of Singapore (EOS) via its funding from the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence Initiative. RS is further supported by the National Research Foundation Investigatorship Scheme (award no. NRF-NRFI05-2019-0009 to Emma Hill)

    A perspective on life-cycle health technology assessment and real-world evidence for precision oncology in Canada

    Get PDF
    Health technology assessment (HTA) can be used to make healthcare systems more equitable and efficient. Advances in precision oncology are challenging conventional thinking about HTA. Precision oncology advances are rapid, involve small patient groups, and are frequently evaluated without a randomized comparison group. In light of these challenges, mechanisms to manage precision oncology uncertainties are critical. We propose a life-cycle HTA framework and outline supporting criteria to manage uncertainties based on real world data collected from learning healthcare systems. If appropriately designed, we argue that life-cycle HTA is the driver of real world evidence generation and furthers our understanding of comparative effectiveness and value. We conclude that life-cycle HTA deliberation processes must be embedded into healthcare systems for an agile response to the constantly changing landscape of precision oncology innovation. We encourage further research outlining the core requirements, infrastructure, and checklists needed to achieve the goal of learning healthcare supporting life-cycle HTA

    The FKBP52 Cochaperone Acts in Synergy with β-Catenin to Potentiate Androgen Receptor Signaling

    Get PDF
    FKBP52 and β-catenin have emerged in recent years as attractive targets for prostate cancer treatment. β-catenin interacts directly with the androgen receptor (AR) and has been characterized as a co-activator of AR-mediated transcription. FKBP52 is a positive regulator of AR in cellular and whole animal models and is required for the development of androgendependent tissues. We previously characterized an AR inhibitor termed MJC13 that putatively targets the AR BF3 surface to specifically inhibit FKBP52-regulated AR signaling. Predictive modeling suggests that β-catenin interacts with the AR hormone binding domain on a surface that overlaps with BF3. Here we demonstrate that FKBP52 and β-catenin interact directly in vitro and act in concert to promote a synergistic up-regulation of both hormone-independent and -dependent AR signaling. Our data demonstrate that FKBP52 promotes β-catenin interaction with AR and is required for β-catenin co-activation of AR activity in prostate cancer cells. MJC13 effectively blocks β-catenin interaction with the AR LBD and the synergistic up-regulation of AR by FKBP52 and β-catenin. Our data suggest that co-regulation of AR by FKBP52 and β-catenin does not require FKBP52 PPIase catalytic activity, nor FKBP52 binding to Hsp90. However, the FKBP52 proline-rich loop that overhangs the PPIase pocket is critical for synerg

    Dual Chromatin and Cytoskeletal Remodeling by SETD2

    Get PDF
    Posttranslational modifications (PTMs) of tubulin specify microtubules for specialized cellular functions and comprise what is termed a "tubulin code." PTMs of histones comprise an analogous "histone code," although the "readers, writers, and erasers" of the cytoskeleton and epigenome have heretofore been distinct. We show that methylation is a PTM of dynamic microtubules and that the histone methyltransferase SET-domain-containing 2 (SETD2), which is responsible for H3 lysine 36 trimethylation (H3K36me3) of histones, also methylates α-tubulin at lysine 40, the same lysine that is marked by acetylation on microtubules. Methylation of microtubules occurs during mitosis and cytokinesis and can be ablated by SETD2 deletion, which causes mitotic spindle and cytokinesis defects, micronuclei, and polyploidy. These data now identify SETD2 as a dual-function methyltransferase for both chromatin and the cytoskeleton and show a requirement for methylation in maintenance of genomic stability and the integrity of both the tubulin and histone codes
    corecore