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PERSPECTIVE OPEN

A perspective on life-cycle health technology assessment and
real-world evidence for precision oncology in Canada
Dean A. Regier 1,2, Samantha Pollard 1, Melanie McPhail 3, Tania Bubela3, Timothy P. Hanna 4,5, Cheryl Ho6,7, Howard J. Lim6,7,
Kelvin Chan8, Stuart J. Peacock1,3 and Deirdre Weymann1✉

Health technology assessment (HTA) can be used to make healthcare systems more equitable and efficient. Advances in precision
oncology are challenging conventional thinking about HTA. Precision oncology advances are rapid, involve small patient groups,
and are frequently evaluated without a randomized comparison group. In light of these challenges, mechanisms to manage
precision oncology uncertainties are critical. We propose a life-cycle HTA framework and outline supporting criteria to manage
uncertainties based on real world data collected from learning healthcare systems. If appropriately designed, we argue that life-
cycle HTA is the driver of real world evidence generation and furthers our understanding of comparative effectiveness and value.
We conclude that life-cycle HTA deliberation processes must be embedded into healthcare systems for an agile response to the
constantly changing landscape of precision oncology innovation. We encourage further research outlining the core requirements,
infrastructure, and checklists needed to achieve the goal of learning healthcare supporting life-cycle HTA.

npj Precision Oncology            (2022) 6:76 ; https://doi.org/10.1038/s41698-022-00316-1

INTRODUCTION
Regulatory and reimbursement bodies rely on health technology
assessment (HTA) evidence and deliberation to promote equitable
and efficient healthcare systems. Advances in precision oncology
challenge HTA. Precision oncology advances are rapid, often
tumour or disease agnostic, and involve small groups of patients
that are clinically evaluated without a contemporary comparison
group. Precision oncology has demonstrated correlative health
improvements in a few applications1,2, but its reach to patients
remains limited in routine clinical care3, in part due to an
insufficiency of evidence and inadequate evaluative processes to
support implementation. In this perspective, we describe a life-
cycle evaluative approach to precision oncology based on real
world data (RWD) collected from a learning healthcare system
(LHS)4. RWD are data on patient and health system outcomes that
are routinely collected from a variety of sources. If the HTA process
is appropriately designed and based on local priorities, it will
support LHS and provide a platform for generating RWD, which
enables real world evidence (RWE). RWE is evidence regarding the
benefits, risks, and cost-effectiveness of health technologies based
on RWD.

MANAGING UNCERTAINTY IS CRITICAL
Evidence generation for precision oncology often relies on non-
randomized master protocol trials or randomized controlled trials
(RCTs) with limited follow-up or intermediate endpoints5,6. Among
the many resource use considerations, the cost of comprehensive
genomic profiling (CGP) and its associated targeted therapies are
substantial7. Trials designed to demonstrate clinical activity and
safety but not causal efficacy or changes in quality and length of
life pose considerable problems for the quantification of

effectiveness and cost-effectiveness, where the latter is reliant
on incremental costs and quality adjusted life years (QALYs)8. The
confluence of limited patient numbers, rapidly changing technol-
ogy cost, non-traditional trial designs, and short-term outcomes
data are incongruent with HTA, thus limiting the translation of
precision oncology and CGP more generally into routine clinical
practice.
An exemplar of the challenges facing precision oncology HTA is

Neurotrophic Tyrosine Receptor Kinase (NTRK) inhibitors for solid
tumours with an NTRK gene fusion. In Canada, the Canadian
Agency for Drugs and Technology in Health (CADTH) did not
initially recommend reimbursement for an NTRK inhibitor on the
basis of: uncertain magnitude of clinical benefit and cost-
effectiveness, the heterogeneity inherent in evaluating tumour
agnostic therapies, and a lack of RCT-generated comparative
evidence9. CADTH’s recommendation subsequently evolved with
a conditional positive recommendation with price reduction,
noting that if jurisdictions are required to pay for CGP then there is
no price for the anticancer drug that would make it cost-effective.
In the United Kingdom, the National Institute for Health and Care
Excellence (NICE) recommended that this same therapy only be
funded through the cancers drug fund with a managed access
agreement that gathers additional data to address clinical
evidence uncertainties10. Common amongst this and other
precision oncology exemplars is significant decision uncertainty,
where the magnitude and precision of effects and impact on
expenditures are largely unknown, making the opportunity cost
(or healthcare system economic value) of diverting constrained
resources to the intervention impossible to articulate.
Internationally, stakeholders representing HTA bodies recognize

that mechanisms for managing uncertainty are critical, particularly
in light of significant clinician and patient demand for innovative
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therapeutics11. They have concluded that HTA needs to evolve to
reflect the realities of current and future healthcare innovation
ecosystems. While health economists have long published
methods for managing uncertainty12, renewed interest in RWD
is advancing conversations about RWE for life-cycle evalua-
tion13,14. Life-cycle HTA endeavours to assess the health,
economic, and societal impacts of a technology across its life-
cycle, from research and development to obsolescence. Such
evaluative approaches need to be supported by regulatory and
legal frameworks, in addition to processes and methods that aid
iterative decision-making. Hereafter we examine the concept of
LHS and its role in generating RWE throughout the technology
life-cycle. We then propose a life-cycle evaluation framework and
discuss relevant future considerations for implementing life-
cycle HTA.

LEARNING HEALTHCARE DECISIONS
Regulatory and reimbursement decisions should be evidence-
based. Decision-making processes are deliberative, using an
evidentiary package that may include: evidence of safety, clinical
effectiveness, cost-effectiveness, patient value, and implementa-
tion considerations. Critical deliberations of safety and clinical
effectiveness are based on the epidemiological hierarchy of
evidence15, together with reference case guidelines for health
economic evaluation16,17. Precision oncology interventions are
rarely supported by evidence at the pinnacle of the hierarchy,
namely RCTs and meta-analyses of RCTs6. Instead, evidence based
solely on single-arm studies is used. Single-arm studies cannot
establish comparative causality and unbiased effect estimation,
leading to uninterpretable evidence. Such uninterpretable evi-
dence should be supplemented to support regulatory or
reimbursement deliberations. Additional evidence can be gener-
ated through concatenating healthcare systems’ RWD with CGP
and trial data.

Real world data are generated as part of a learning healthcare
system
RWD are appropriate for use in regulatory and reimbursement
decisions that deliberate on value. Quality RWD generation,
however, depends on the design and implementation of LHS.
LHS collect and evaluate data and apply evidence to improve
patient health; drive discovery as a result of patient-centred care;
and ensure innovation, quality, safety, and value in healthcare18. In
the context of precision oncology, an LHS would longitudinally
integrate CGP information with other health data, including:
information on patient characteristics, disease characteristics,
resource use, treatment, patient-reported outcomes, adverse
events, and clinical health outcomes. The use of RWD in an LHS
complements, but does not replace, evidence-informed medicine.
Both approaches support evidence-driven care and shared
decision-making for improved population health19.
LHS characteristics have been reported elsewhere20; common

elements include specifying standards for: fit-for-purpose RWD,
technology enabling data curation and architecture, and estab-
lished governance frameworks, including with respect to ethics,
privacy, data security, and law. Decision-grade data generation is
premised on health record data systems that enable decisions.
These systems are complex, and for most healthcare systems will
require improvements in: data architecture and consensus on data
use for research and implementation; quality data collection and
curation that brings together siloed data sources to inform better
decisions, both at the health system reimbursement level and in
the regulatory context; and improved computational resources so
that data scientists can develop, validate, and deploy approaches,
for example, in artificial intelligence and natural language
processing.

The use of RWD in decisions has been limited in practice.
Healthcare systems face legal, structural, and operational barriers
in the development of LHS. For example, generation and use of
RWD may be impeded by data stewards’ conservative interpreta-
tion and implementation of legislation that governs privacy and
health information. Systematic use of RWD has been largely
confined to individual clinical decision-making, hospital perfor-
mance reporting, and quality improvement, all of which work
together to enshrine the longstanding problem of a lack of
integration of research into LHS21. Research is key to LHS, and
methods improvements are needed for real world evaluative
study designs to enable iterative learning and continual system
improvement21. Along these lines, we argue that research-enabled
RWE together with iterative life-cycle evaluation for HTA is a
critical and undeveloped component of LHS.

LIFE-CYCLE ASSESSMENT
Life-cycle evaluation can be applied at any stage: from innovation
to regulatory decisions, to reimbursement, re-appraisal, and
disinvestment (Fig. 1)22,23. Each life-cycle phase can draw from
complementary HTA methodologies. For example, in the innova-
tion phase (discovery and early phase clinical trials), methods that
combine business and economics, including early-stage economic
evaluation (what is the range of a cost-effective drug price?) and
real-options analysis (should we continue to invest in research?),
inform the expected attractiveness of investing in phase II/III
clinical trials. Prior to reimbursement, interventions with uncertain
clinical trial evidence may be eligible for managed access, which
could support conditional access to technologies whose effec-
tiveness and cost-effectiveness are uncertain, providing time-
limited access to patients, while generating evidence to decrease
decision uncertainty24–27. In the post-reimbursement phase,
continual surveillance and health technology management
provide the opportunity for comparative evaluation using quasi-
experimental comparisons of eligible versus ineligible patient
cohorts, including through matched and pre/post study designs,
such as propensity score or genetic matching28 or interrupted
time series analysis29. The outcomes of these phases can inform
disinvestment in expected low-value technologies, freeing
resources for other areas of innovation or healthcare. Throughout
each life-cycle phase, patients, families, and the public should be
engaged as partners and participants in research. Their participa-
tion ensures that evidence produced and subsequent reimburse-
ment decision-making meet their needs and preferences.

A precision oncology life-cycle health technology assessment
framework
Generating life-cycle evidence to support timely and affordable
access to promising technologies requires careful thought around
an evidence and deliberation framework. We turn now to an
advanced approach for life-cycle HTA, where there is initial full or
conditional regulatory approval for the target technology,
combined with uncertainty in comparative effectiveness and
cost-effectiveness. We define life-cycle HTA as the standardization
of data collected and methods needed to inform life-cycle
appraisal, re-appraisal, and de-adoption of health technologies,
all conducted within a living and adaptive LHS that periodically
examines the value of continued research and evaluation in light
of an evolving evidence base. Accordingly, life-cycle HTA is
premised on an LHS that is iterative and ongoing, with data that
aids serial decision-making. Life-cycle HTA differs from traditional
HTA, which focuses on static estimates of effectiveness and
expected present value30.
Our life-cycle HTA process framework is depicted in Fig. 2. The

supporting criteria critical to each element of the framework are in
Table 1. This framework is directed to generate and evaluate
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evidence for: (1) technologies with regulatory approval but that
are not yet reimbursed, where RCT evidence is either based on
small patient numbers or when RCT evidence will not be pursued
because of disease rarity or lack of incentivization (e.g., patent
expiry); or (2) reimbursed technologies, where there is uncertainty
in comparative value, and where technology management is
important for sustainability. Framework components are: (a)
managed access that defines the time horizon and pricing
conditions of real-world healthcare system trialing (including
zero-cost or discounted cost drug provision); (b) collecting core
data elements for RWD, including leveraging external data; (c)
RWE generation to determine comparative effectiveness, cost-
effectiveness (net-benefit), and the value of conducting additional
research; and (d) interpretation of data and updating of decisions,
including investment, continued evaluation, or disinvestment

from managed access. Each life-cycle HTA step is briefly examined
below in the context of CGP-directed precision oncology.

Managed access. Managed access agreements allow patients to
access new technologies while collecting additional data for RWE;
for life-cycle HTA, the goal of managed access is to address key
uncertainties and better inform reimbursement decisions. It is
crucial to note that managed access agreements do not need to
be promises of reimbursement but they do outline conditions
under which reimbursement may be achieved. Managed access
agreements can be informed by a combination of: decision-
maker(s) conditions for allowing healthcare system access and
industry sponsor conditions for funding health technology access;
and the baseline value of initiating and continuing collection of
RWD within the LHS using value of information analysis. While not

(a) 
Managed 
access

(b) Collect 
real world 

data

(c) Real 
world 

evidence  

(d) Interpret 
& deliberate

Deliberative Framework

Clinical Effectiveness
Cost-effectiveness
Value of Information
Patient value

Data Requirements
Imputation of Missing Data

Policy and
Outcomes Requirements
Value of Information

Invest or disinvest or
continue collecting 
real world data

Update
decision

External
data sets

Fig. 2 A life-cycle health technology assessment process framework. Life-cycle health technology assessment is the standardization of data
collected and methods needed to inform life-cycle appraisal, re-appraisal, and de-adoption of health technologies. The framework includes:
managed access for conditional support subject to collecting real world evidence; collecting real world data and concatenating that data with
external data; generating real world evidence for decisions, and interpreting the evidence to decide on adoption, disinvesting from managed
access, or continuing to collect data.

Life cycle 
evalua�on 
& learning 
healthcare

Regulatory 
approval

Health 
Technology

Reimbursement

Health 
Technology

Management

Innova�on

Social, economic, 
organiza�onal 

and ethical issues 

Investment & 
implementa�on

Op�mal use & 
monitoring

Research & 
development, 
clinical trials

Disinvestment 
from low value

Fig. 1 Stages of the technology life-cycle and learning healthcare. Life-cycle stages of drugs include: drug discovery and development
(innovation), preclinical and clinical research, regulatory approval based on safety and efficacy, health technology assessment (investment,
implementation), health technology management (optimal use), and disinvestment from low-value technologies. Learning healthcare
generates and applies evidence to improve patient health; drive discovery as a result of data from patient care; and ensure innovation, quality,
safety, and value for money in healthcare.
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extensively used in HTA, value of information analysis methods
(e.g., expected value of sample information) can estimate the
current expected value to society of collecting additional data
from a sample of observations31. As such, the value of information
analysis informs the time horizon of institutional support because
it can quantify whether the value of collecting additional data is
less (greater) than the cost of continuing to invest in research.
Key to supporting managed access and sustainable decision-

making is set guidance regarding what constitutes comparative
value. For an intervention to be considered cost-effective,
decision-makers need to specify an endpoint, such as Net
Monetary Benefit (NMB), which would need to be positive to
demonstrate value for money. NMB represents the monetary
value of an intervention conditional on both a particular
willingness to pay for a health gain and the expected cost of
technology implementation. This endpoint is calculated as the
difference between incremental cost and the product of incre-
mental effectiveness and payers’ willingness to pay for a gain in
effectiveness, i.e., NMB= λ*ΔQALY− ΔC. Where ΔC is the cost
difference between the treatment and comparator, termed
incremental cost (Ct− Cc), ΔQALY is incremental effectiveness
(QALYt−QALYc), and λ is payers’ willingness to pay for a QALY
gain. QALYs are anchored on preference-based values between 0
(death) and 1 (perfect health). The willingness to pay threshold (λ)
represents the opportunity cost of displacing QALYs from other
interventions given budget constraints. For transparency,
decision-makers will need to define λ. Decision makers will also
deliberate on comparative clinical effectiveness. Determining the
endpoint for clinical effectiveness will be disease-dependent, but

patient-valued endpoints such as survival, health-related quality of
life, or progression provide advantages over intermediate end-
points with uncertain patient utility (e.g., patient is matched to an
experimental trial). When deliberating on clinical effectiveness, an
endpoint with an established minimally important difference will
facilitate deliberation. Understanding the impact of a defined
clinical endpoint speaks to the importance of research with
patients on their preferences and values.

Collecting and concatenating real world data. The specification of
core data elements and how to achieve data collection is the
second framework component, with RWD requirements informed
by stakeholders and guided by the study design and analysis.
Pollard et al. (2022) outline our consensus-based core data
elements for precision oncology life-cycle assessment, emphasiz-
ing the importance of collecting data throughout the patient
disease and care trajectory, including the time period prior to life-
cycle HTA study initiation32. The core data elements necessary for
life-cycle assessment are in Supplementary Table 1. Data spanning
the pre-study time period enables RWE analyses that generate
synthetic control cohorts. Synthetic control cohorts can include
historical controls and controls from different jurisdictions, with
data on the entire patient trajectory allowing for statistical
analyses of patient outcomes that can adjust for time-varying
confounding and other biases.
Our life-cycle HTA framework responds to situations with small

benefiting patient populations and low event rates by considering
access to external datasets and pooling of cross-jurisdictional data.
Life-cycle HTA also needs to be responsive to administrative data

Table 1. Criteria and key considerations for a life-cycle health technology assessment approach to precision oncology.

Framework element Criteria for life-cycle health technology
assessment

Key criteria considerations

Managed access • Policy and outcome requirements are defined
by stakeholders

Inclusion criteria
• Technologies have regulatory approval but are not reimbursed and
RCT evidence is based on small patient numbers or RCT evidence will
not be pursued because of disease rarity
or

• There is uncertainty in comparative value for reimbursed technologies,
and where technology management is important for sustainability.
Evaluation:

• Conditions of managed access agreement are clearly defined

Collect real world data • A defined and achievable core data set to
support deliberation

• Missing data in the core dataset is addressed
• External data sets are leveraged to address
uncertainty

Healthcare system data criteria
• Decision-grade real world data is collected, audited, and mapped to
core data requirements

• Infrastructure supports data collection or abstraction of reliable data
External data
• External data is audited for quality and mapped to core data
requirements
Missing data
• A missing data strategy for core data elements is articulated and
acceptable to decision-makers

Real world evidence • Clinical effectiveness
• Cost-effectiveness
• Patient value
• Value of collecting additional data

Study design criteria
• Study design is supported by real world data generated from a
learning healthcare system

• Study design enables causal inference of outcomes
• Study design is acceptable to decision makers
Uncertainty

• Value of information analyses articulate whether there is continued
value to collecting additional data given new data

Interpret and deliberate • A deliberative process examines the evidence
and the uncertainty around the evidence

• A decision is made to invest, disinvest, or
continue managed access

Process criteria
• The process is structured to be consistent and transparent
• The committee is multi-disciplinary and includes ethics, economics,
clinical oncology, and decision-makers

• Discussion of uncertainty and its impact on decision-making is
articulated
• Decision is based on the evidence package and associated uncertainty
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shortcomings. Administrative databases were established to
support routine patient tracking and financial planning. Their
use in life-cycle HTA has the advantage of being often population-
based and generalizable to the routine unselected population,
unlike cohort or clinical trials databases. On the other hand, they
may not fully capture the required data for analyses. Inconsistently
collected data, missing variables, and incomplete data entry
introduce additional challenges for comparative evaluations.
Resultant effect estimates may be subject to both random and
systematic error, unless life-cycle HTA considers methods for
addressing and imputing missing data.
External data generated through cohort studies or clinical trials

provides an opportunity for integration and linkage with health
systems-generated RWD. Leveraging existing datasets (Fig. 2) will
allow for initial analyses to be conducted based on current evidence
and can facilitate components of the prospective data analysis,
through informing intervention outcomes (e.g., variant identified
and treatment given) or usual care outcomes (e.g., variant identified
and treatment not given) based on individual-level data. As we will
show next, careful thought has to be given to study design and
analyses generating RWE from non-randomized cohorts.

Real world evidence generation. Life-cycle HTA requires an
approach to study design adaptable to continuous data collection
and iterative evaluation. Figure 3 presents an example non-RCT
study design for evaluating effectiveness and cost-effectiveness of
CGP-directed precision oncology targeting a rare biomarker. The
study design is a retrospective cohort study analyzing linked
routinely and prospectively collected data from multiple sources.
The relevant study period spans the patient’s entire disease
trajectory, from disease onset to date of intervention, to death or
end of follow-up, with final outcomes analyses that allow for left-
or right-censored data. With managed access, the primary cohort
comprises consenting patients eligible to undergo CGP testing for
a targeted therapy. The intervention group includes patients with
a rare biomarker identified by CGP who receive targeted
treatment. If the targeted therapy also requires the new
reimbursement of a CGP technology, the intervention group
may also include those who receive CGP but are biomarker
negative. The comparison group are those with or without the rare
biomarker who do not receive the targeted treatment. Given that

patients with a rare biomarker who receive usual care are usually
unobserved, quasi-experimental methods, pooling of available
data from across cohorts or jurisdictions, and consideration of
prognostic effects are needed to inform a synthetic counterfactual
with adequate statistical power for effect detection.
Within-sample of the real-world evaluation, matching methods,

such as propensity score matching, coarsened exact matching, or
machine learning (e.g., genetic matching) can identify controls
similar to the intervention group, who instead received usual
care28. We caution that quasi-experimental approaches cannot
adjust for all types of unmeasured confounders, emphasizing the
importance of planning in advance to ensure that the LHS collects
all necessary data elements to help avoid selection bias. Missing
data, another source of bias, again speaks to the need of planning
ahead when designing the LHS platform. Other potential biases
for causal inference of CGP interventions are lead time bias or
immortal time bias, in which treated patients must be outcome-
free until their treatment date and thus have improved relative
outcomes as well as time-dependent effects of subsequent lines of
cancer therapy (systemic, radiation, or surgery)33. These can be
minimally addressed through analytic methods and study design,
built on an awareness of the clinical context of each case.
Stakeholders should note that there is currently no optimal quasi-
experimental method for adjusting for unmeasured confounders
using observational study designs and a risk of bias will always be
present. Externally, individual-level data can be leveraged to
estimate and prognosticate the trajectories of those patients
known to be biomarker positive or negative, but who did not
receive the therapy. Further, clinical trial data from industry
stakeholders can be leveraged to inform biomarker-positive
patients who received the drug intervention.
Non-parametric and parametric methods for effectiveness and

cost-effectiveness analyses on the entire cohort need to be agreed
upon and applied periodically over time. Both Kaplan-Meier
survival analysis and regression models can be considered to
estimate incremental differences in endpoints, such as overall
survival and quality-adjusted survival, within the time horizon of
the available data34. Heterogeneity in clinical effectiveness across
patient subgroups should be explored through stratified analysis
or pooled analysis when sample sizes permit. For evaluating cost-
effectiveness, regression-based methods based on NMB can be

biomarker positive 
patients

follow up until
death or censoring

biomarker unknown 
patients

targeted treatment
Primary endpoints OS, quality-
adjusted survival, NMB

KM analysis and regression of
survival probability

adjusted for time-varying confounders

weighted regression of NMB

weighted by inverse probability of 
censoring, adjusted for residual 
confounding

decision model projecting future 
effectiveness & cost-effectiveness

value of information analysis

biomarker negative 
patients

usual care

usual care

impute missing data on
patient characteristics
and trajectories

usual care

synthetic
counterfactual

genetic 
matching, 

PSM, CEM
matched usual care
control group
(adjusted for prognostic 
effect, where necessary)

matched treated
intervention group

1

biomarker positive 
patients

2

pooling

CEM: coarsened exact matching; KM: Kaplan-Meier; NMB: net monetary benefit; OS: overall survival; PFS: progression-free survival;  PSM: propensity score matching

Fig. 3 Example observational study design for precision oncology. The example design is a retrospective matched cohort study analyzing
linked routinely and prospectively collected data from multiple sources. This study design addresses missing data using multiple imputation
and integrates usual care patient data to inform a synthetic counterfactual for treated patients. Matching identifies this counterfactual, with
matching method selection based on sample sizes, confounding sources, and maximization of covariate balance. Comparative outcomes are
then established.
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used. These methods have the advantages of being able to adjust
for residual confounding and to characterize covariate impacts on
marginal cost-effectiveness35,36. In the likely presence of censor-
ing, net-benefit regression may be weighted by participants’
inverse probability of censoring weights to reduce estimation
bias37. Additionally, decision modelling is a key tool that enables
projection of future effectiveness and cost-effectiveness over a
longer time horizon; it accounts for the patient trajectory beyond
the observed intervention period. Conservative approaches for
modelling should be used, including the assumption of no added
health or survival benefit beyond the observed real-world trial
period. Value of information analysis can identify which para-
meters are driving decision uncertainty and inform continued data
collection and reimbursement decisions31,38.

Interpretation of the evidence and update decision. Decision-
making is usually concerned with static estimates of efficacy,
expected net present value of net benefit, and budget impact or
feasibility, conditional on the current state of knowledge. Life-cycle
HTA is a continuous decision-making process with the need for
ongoing re-assessment informed by data emergence and horizon
scanning. At pre-specified intervals, an interdisciplinary arms-length
and independent prioritization committee should examine the
updated evidence that is tailored for the deliberative processes. In
Canada, prioritization committees exist both federally and within
jurisdictions. Given life-cycle HTA is responsive to small sample sizes
where high decision uncertainty is present, we suggest that an initial
managed access recommendation is made at the national level,
followed by coordination of data generation and prioritization at
both the provincial and federal levels. The specifics around the
managed access approach and the coordination of data sharing is a
topic of ongoing debate and is a crucial area of additional research.
Regarding data sharing between jurisdictions, we believe
technology-enabled federated analysis is an important step for
producing cross-jurisdictional evidence where the RWD does not
have to leave the jurisdiction within which it was generated.
The decision to disinvest, to continue with evidence develop-

ment, or to fund a technology (Fig. 2) should be based on previous
knowledge and on the new evidence emerging from life-cycle
evaluation. As discussed, the value of information analysis can
inform whether to collect additional evidence. The value of
collecting additional evidence will also be shaped by the
committee’s tolerance for uncertainty of clinical effectiveness and
the joint uncertainty in incremental costs and benefits.
Life-cycle HTA deliberations that are not supported by RCT

evidence face the critical issue of potentially biased outcomes
estimation. As a result, life-cycle HTA utilizing RWD absent of
randomized study protocols should be subject to considerable
scrutiny and oversight. We recommend that independent HTA
outcomes units collaborate with decision-making committees to
define the endpoints, study protocols, and supporting analyses
needed for deliberation. Further, research infrastructure that allows
for scrutinization of safety, effectiveness, and cost outcomes and
that permits requests of additional analyses by experts will be an
important component for ensuring trust in RWE. We recognize that
HTA units will need to collaborate with for-profit entities, particularly
when patient-level data from clinical trials to support RWE are key to
addressing uncertainty and when financial resourcing may be
required. Ideally, publicly and privately funded life-cycle HTA experts
will work together to inform clinical trial protocols. This important
collaboration is critical for enabling transparent life-cycle HTA
analyses and subjecting the protocols and analytic approaches to
scientific debate.

CONCLUSION
In summary, the adoption of a life-cycle HTA framework alongside
transparent and comprehensive decision-making, is needed to

implement an LHS approach for CGP-informed precision oncol-
ogy. This approach will permit a deeper understanding of the
value of precision oncology, and allow a continued agile response
to the constantly changing landscape of precision oncology
innovations. We encourage further research into how healthcare
systems can be equipped to have sufficient personnel and
infrastructure to achieve the goal of LHS supporting life-cycle HTA.
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