396 research outputs found

    IXPE Mirror Module Assemblies

    Get PDF
    Expected to launch in 2021 Spring, the Imaging X-ray Polarimetry Explorer (IXPE) is a NASA Astrophysics Small Explorer Mission with significant contributions from the Italian space agency (ASI). The IXPE observatory features three identical x-ray telescopes, each comprised of a 4-m-focal-length mirror module assembly (MMA, provided by NASA Marshall Space Flight Center) that focuses x rays onto a polarization-sensitive, imaging detector (contributed by ASI-funded institutions). This paper summarizes the MMAs design, fabrication, alignment and assembly, expected performance, and calibration plans

    Performance of random forests and logic regression methods using mini-exome sequence data

    Get PDF
    Machine learning approaches are an attractive option for analyzing large-scale data to detect genetic variants that contribute to variation of a quantitative trait, without requiring specific distributional assumptions. We evaluate two machine learning methods, random forests and logic regression, and compare them to standard simple univariate linear regression, using the Genetic Analysis Workshop 17 mini-exome data. We also apply these methods after collapsing multiple rare variants within genes and within gene pathways. Linear regression and the random forest method performed better when rare variants were collapsed based on genes or gene pathways than when each variant was analyzed separately. Logic regression performed better when rare variants were collapsed based on genes rather than on pathways

    Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    Get PDF
    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting

    First Images from HERO: A Hard-X-Ray Focusing Telescope

    Get PDF
    We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous Ī²-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8Ā±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6Ā±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular Ī²-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1

    Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations

    Full text link
    We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads sampling-up-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that large-amplitude RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps.Comment: 55 pages, 10 figure

    Challenges Enrolling Children Into Traumatic Brain Injury Trials: An Observational Study

    Full text link
    ObjectivesIn preparation for a clinical trial of therapeutic agents for children with moderateā€toā€severe blunt traumatic brain injuries (TBIs) in emergency departments (EDs), we conducted this feasibility study to (1) determine the number and clinical characteristics of eligible children, (2) determine the timing of patient andĀ guardian arrival to the ED, and (3) describe the heterogeneity of TBIs on computed tomography (CT) scans.MethodsWe conducted a prospective observational study at 16 EDs of children ā‰¤Ā 18Ā years of age presenting with blunt head trauma and Glasgow Coma Scale scores of 3ā€“12. We documented the number of potentially eligible patients, timing of patient and guardian arrival, patient demographics and clinical characteristics, severity of injuries, and cranial CT findings.ResultsWe enrolled 295 eligible children at the 16 sites over 6 consecutive months. Cardiac arrest and nonsurvivable injuries were the most common characteristics that would exclude patients from a future trial. Most children arrived within 2Ā hours of injury, but most guardians did not arrive until 2ā€“3Ā hours after the injury. There was a substantial range in types of TBIs, with subdural hemorrhages being the most common.ConclusionEnrolling children with moderateā€toā€severe TBI into timeā€sensitive clinical trials will require large numbers of sites and meticulous preparation and coordination and will prove challenging to obtain informed consent given the timing of patient and guardian arrival. The Federal Exception from Informed Consent for Emergency Research will be an important consideration for enrolling these children.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135996/1/acem13085_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135996/2/acem13085.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135996/3/acem13085-sup-0001-DataSupplementS1.pd

    Comparison of results from tests of association in unrelated individuals with uncollapsed and collapsed sequence variants using tiled regression

    Get PDF
    Tiled regression is an approach designed to determine the set of independent genetic variants that contribute to the variation of a quantitative trait in the presence of many highly correlated variants. In this study, we evaluate the statistical properties of the tiled regression method using the Genetic Analysis Workshop 17 data in unrelated individuals for traits Q1, Q2, and Q4. To increase the power to detect rare variants, we use two methods to collapse rare variants and compare the results with those from the uncollapsed data. In addition, we compare the tiled regression method to traditional tests of association with and without collapsed rare variants. The results show that collapsing rare variants generally improves the power to detect associations regardless of method, although only variants with the largest allelic effects could be detected. However, for traditional simple linear regression, the average estimated type I error is dependent on the trait and varies by about three orders of magnitude. The estimated type I error rate is stable for tiled regression across traits
    • ā€¦
    corecore