12 research outputs found

    Slow-roll, acceleration, the Big Rip and WKB approximation in NLS-type formulation of scalar field cosmology

    Full text link
    Aspects of non-linear Schr\"{o}dinger-type (NLS) formulation of scalar (phantom) field cosmology on slow-roll, acceleration, WKB approximation and Big Rip singularity are presented. Slow-roll parameters for the curvature and barotropic density terms are introduced. We reexpress all slow-roll parameters, slow-roll conditions and acceleration condition in NLS form. WKB approximation in the NLS formulation is also discussed when simplifying to linear case. Most of the Schr\"{o}dinger potentials in NLS formulation are very slowly-varying, hence WKB approximation is valid in the ranges. In the NLS form of Big Rip singularity, two quantities are infinity in stead of three. We also found that approaching the Big Rip, weff→−1+2/3qw_{\rm eff}\to -1 + {2}/{3q}, (q<0)(q<0) which is the same as effective phantom equation of state in the flat case.Comment: [7 pages, no figure, more reference added, accepted by JCAP

    Phenomenology of Λ\Lambda-CDM model: a possibility of accelerating Universe with positive pressure

    Full text link
    Among various phenomenological Λ\Lambda models, a time-dependent model Λ˙∼H3\dot \Lambda\sim H^3 is selected here to investigate the Λ\Lambda-CDM cosmology. Using this model the expressions for the time-dependent equation of state parameter ω\omega and other physical parameters are derived. It is shown that in H3H^3 model accelerated expansion of the Universe takes place at negative energy density, but with a positive pressure. It has also been possible to obtain the change of sign of the deceleration parameter qq during cosmic evolution.Comment: 16 Latex pages, 11 figures, Considerable modifications in the text; Accepted in IJT

    Reconstruction of scalar potentials in two-field cosmological models

    Full text link
    We study the procedure of the reconstruction of phantom-scalar field potentials in two-field cosmological models. It is shown that while in the one-field case the chosen cosmological evolution defines uniquely the form of the scalar potential, in the two-field case one has an infinite number of possibilities. The classification of a large class of possible potentials is presented and the dependence of cosmological dynamics on the choice of initial conditions is investigated qualitatively and numerically for two particular models.Comment: final version, to appear in JCA
    corecore