25 research outputs found

    Aquatic Vegetation, Largemouth Bass and Water Quality Responses to Low-Dose Fluridone Two Years Post Treatment

    Get PDF
    Whole-lake techniques are increasingly being used to selectively remove exotic plants, including Eurasian watermilfoil ( Myriophyllum spicatum L.). Fluridone (1-methyl-3-phenyl- 5-[3-(trifluoromethyl)phenyl]-4(1 H )-pyridinone), a systemic whole-lake herbicide, is selective for Eurasian watermilfoil within a narrow low concentration range. Because fluridone applications have the potential for large effects on plant assemblages and lake food webs, they should be evaluated at the whole-lake scale. We examined effects of low-dose (5 to 8 ppb) fluridone applications by comparing submersed plant assemblages, water quality and largemouth bass ( Micropterus salmoides ) growth rates and diets between three reference lakes and three treatment lakes one- and two-years post treatment. In the treatment lakes, fluridone reduced Eurasian watermilfoil cover without reducing native plant cover, although the duration of Eurasian watermilfoil reduction varied among treatment lakes. (PDF has 11 pages.

    Approaches for advancing scientific understanding of macrosystems

    Get PDF
    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them

    Approaches to advance scientific understanding of macrosystems ecology

    Get PDF
    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological pat- terns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require valida- tion, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them

    LAGOS‐US RESERVOIR: A database classifying conterminous U.S. lakes 4 ha and larger as natural lakes or reservoir lakes

    No full text
    Abstract The LAGOS‐US RESERVOIR data module classifies all 137,465 lakes ≥ 4 ha in the conterminous U.S. into three categories using a machine learning predictive model based on visual interpretation of lake outlines and a lake shape classification rule. Natural Lakes (NLs) are defined as naturally formed, lacking large, flow‐altering structures; Reservoir Class A's (RSVR_A) are defined as lakes likely human‐made or human‐altered by a large water control structure; and Reservoir Class B's (RSVR_Bs) are lakes likely human‐made but are not connected to streams and have a shape rare in NLs. We trained machine learning models on 12,162 manually classified lakes to predict assignment as an NL or RSVR, then further classified RSVRs based on NHD Fcodes, isolation, and angularity. Our classification indicates that > 46% of lakes ≥ 4 ha in the conterminous U.S. are reservoir lakes. These data can be easily combined with other LAGOS‐US modules and U.S. national databases for the broad‐scale study of reservoir lakes and NLs

    Improving the culture of interdisciplinary collaboration in ecology by expanding measures of success

    Get PDF
    Interdisciplinary collaboration is essential to understand ecological systems at scales critical to human decision making. Current reward structures are problematic for scientists engaged in interdisciplinary research, particularly early career researchers, because academic culture tends to value only some research outputs, such as primary-authored publications. Here, we present a framework for the costs and benefits of collaboration, with a focus on early career stages, and show how the implementation of novel measures of success can help defray the costs of collaboration. Success measures at team and individual levels include research outputs other than publications, including educational outcomes, dataset creation, outreach products (eg blogs or social media), and the application of scientific results to policy or management activities. Promotion and adoption of new measures of success will require concerted effort by both collaborators and their institutions. Expanded measures should better reflect and reward the important work of both disciplinary and interdisciplinary teams at all career stages, and help sustain and stimulate a collaborative culture within ecology
    corecore