2,741 research outputs found
Quasinormal modes of Kerr-Newman black holes: coupling of electromagnetic and gravitational perturbations
We compute numerically the quasinormal modes of Kerr-Newman black holes in
the scalar case, for which the perturbation equations are separable. Then we
study different approximations to decouple electromagnetic and gravitational
perturbations of the Kerr-Newman metric, computing the corresponding
quasinormal modes. Our results suggest that the Teukolsky-like equation derived
by Dudley and Finley gives a good approximation to the dynamics of a rotating
charged black hole for Q<M/2. Though insufficient to deal with Kerr-Newman
based models of elementary particles, the Dudley-Finley equation should be
adequate for astrophysical applications.Comment: 13 pages, 3 figures. Minor changes to match version accepted in Phys.
Rev.
Active gravitational mass and the invariant characterization of Reissner-Nordstrom spacetime
We analyse the concept of active gravitational mass for Reissner-Nordstrom
spacetime in terms of scalar polynomial invariants and the Karlhede
classification. We show that while the Kretschmann scalar does not produce the
expected expression for the active gravitational mass, both scalar polynomial
invariants formed from the Weyl tensor, and the Cartan scalars, do.Comment: 6 pages Latex, to appear in General Relativity and Gravitatio
Implied volatility of basket options at extreme strikes
In the paper, we characterize the asymptotic behavior of the implied
volatility of a basket call option at large and small strikes in a variety of
settings with increasing generality. First, we obtain an asymptotic formula
with an error bound for the left wing of the implied volatility, under the
assumption that the dynamics of asset prices are described by the
multidimensional Black-Scholes model. Next, we find the leading term of
asymptotics of the implied volatility in the case where the asset prices follow
the multidimensional Black-Scholes model with time change by an independent
increasing stochastic process. Finally, we deal with a general situation in
which the dependence between the assets is described by a given copula
function. In this setting, we obtain a model-free tail-wing formula that links
the implied volatility to a special characteristic of the copula called the
weak lower tail dependence function
Superradiance from BEC vortices: a numerical study
The scattering of sound wave perturbations from vortex excitations of
Bose-Einstein condensates(BEC) is investigated by numerical integration of the
associated Klein-Gordon equation. It is found that, at sufficiently high
angular speeds, sound wave-packets can extract a sizeable fraction of the
vortex energy through a mechanism of superradiant scattering. It is conjectured
that this superradiant regime may be detectable in BEC experiments.Comment: 4 pages, 4 figure
Molecular Structures in T=1 states of 10B
Multi-center (molecular) structures can play an important role in light
nuclei. The highly deformed rotational band in 10Be with band head at 6.179 MeV
has been observed recently and suggested to have an exotic alpha:2n:alpha
configuration. A search for states with alpha:pn:alpha two-center molecular
configurations in 10B that are analogous to the states with alpha:2n:alpha
structure in 10Be has been performed. The T=1 isobaric analog states in 10B
were studied in the excitation energy range of E=8.7-12.1 MeV using the
reaction 1H(9Be,alpha)6Li*(T=1, 0+, 3.56 MeV). An R-matrix analysis was used to
extract parameters for the states observed in the (p,alpha) excitation
function. Five T=1 states in 10B have been identified. The known 2+ and 3-
states at 8.9 MeV have been observed and their partial widths have been
measured. The spin-parities and partial widths for three higher lying states
were determined. Our data support theoretical predictions that the 2+ state at
8.9 MeV (isobaric analog of the 7.54 MeV state in 10Be) is a highly clustered
state and can be identified as a member of the alpha:np:alpha rotational band.
The next member of this band, the 4+ state, has not been found. A very broad 0+
state at 11 MeV that corresponds to pure alpha+6Li(0+,T=1) configuration is
suggested and it might be related to similar structures found in 12C, 18O and
20Ne.Comment: 10 pages, 10 figures, accepted in Physical Review
Trojan Horse as an indirect technique in nuclear astrophysics. Resonance reactions
The Trojan Horse method is a powerful indirect technique that provides
information to determine astrophysical factors for binary rearrangement
processes at astrophysically relevant energies by measuring
the cross section for the Trojan Horse reaction in
quasi-free kinematics. We present the theory of the Trojan Horse method for
resonant binary subreactions based on the half-off-energy-shell R matrix
approach which takes into account the off-energy-shell effects and initial and
final state interactions.Comment: 6 pages and 1 figur
Indirect techniques in nuclear astrophysics. Asymptotic Normalization Coefficient and Trojan Horse
Owing to the presence of the Coulomb barrier at astrophysically relevant
kinetic energies it is very difficult, or sometimes impossible, to measure
astrophysical reaction rates in the laboratory. That is why different indirect
techniques are being used along with direct measurements. Here we address two
important indirect techniques, the asymptotic normalization coefficient (ANC)
and the Trojan Horse (TH) methods. We discuss the application of the ANC
technique for calculation of the astrophysical processes in the presence of
subthreshold bound states, in particular, two different mechanisms are
discussed: direct capture to the subthreshold state and capture to the
low-lying bound states through the subthreshold state, which plays the role of
the subthreshold resonance. The ANC technique can also be used to determine the
interference sign of the resonant and nonresonant (direct) terms of the
reaction amplitude. The TH method is unique indirect technique allowing one to
measure astrophysical rearrangement reactions down to astrophysically relevant
energies. We explain why there is no Coulomb barrier in the sub-process
amplitudes extracted from the TH reaction. The expressions for the TH amplitude
for direct and resonant cases are presented.Comment: Invited talk on the Conference "Nuclear Physics in Astrophysics II",
Debrecen, Hungary, 16-20 May, 200
Testing the Gaussian Copula Hypothesis for Financial Assets Dependences
Using one of the key property of copulas that they remain invariant under an
arbitrary monotonous change of variable, we investigate the null hypothesis
that the dependence between financial assets can be modeled by the Gaussian
copula. We find that most pairs of currencies and pairs of major stocks are
compatible with the Gaussian copula hypothesis, while this hypothesis can be
rejected for the dependence between pairs of commodities (metals).
Notwithstanding the apparent qualification of the Gaussian copula hypothesis
for most of the currencies and the stocks, a non-Gaussian copula, such as the
Student's copula, cannot be rejected if it has sufficiently many ``degrees of
freedom''. As a consequence, it may be very dangerous to embrace blindly the
Gaussian copula hypothesis, especially when the correlation coefficient between
the pair of asset is too high as the tail dependence neglected by the Gaussian
copula can be as large as 0.6, i.e., three out five extreme events which occur
in unison are missed.Comment: Latex document of 43 pages including 14 eps figure
- …
