105 research outputs found
Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence
We estimate the diffuse supernova neutrino background (DSNB) using the recent
progenitor-dependent, long-term supernova simulations from the Basel group and
including neutrino oscillations at several post-bounce times. Assuming
multi-angle matter suppression of collective effects during the accretion
phase, we find that oscillation effects are dominated by the matter-driven MSW
resonances, while neutrino-neutrino collective effects contribute at the 5-10%
level. The impact of the neutrino mass hierarchy, of the time-dependent
neutrino spectra and of the diverse progenitor star population is 10% or less,
small compared to the uncertainty of at least 25% of the normalization of the
supernova rate. Therefore, assuming that the sign of the neutrino mass
hierarchy will be determined within the next decade, the future detection of
the DSNB will deliver approximate information on the MSW-oscillated neutrino
spectra. With a reliable model for neutrino emission, its detection will be a
powerful instrument to provide complementary information on the star formation
rate and for learning about stellar physics.Comment: 19 pages, including 4 figures and 1 table. Clarifying paragraphs
added; results unchanged. Matches published version in JCA
Can tonne-scale direct detection experiments discover nuclear dark matter?
Models of nuclear dark matter propose that the dark sector contains large
composite states consisting of dark nucleons in analogy to Standard Model
nuclei. We examine the direct detection phenomenology of a particular class of
nuclear dark matter model at the current generation of tonne-scale liquid noble
experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark
matter scenario distinctive features arise in the recoil energy spectra due to
the non-point-like nature of the composite dark matter state. We calculate the
number of events required to distinguish these spectra from those of a standard
point-like WIMP state with a decaying exponential recoil spectrum. In the most
favourable regions of nuclear dark matter parameter space, we find that a few
tens of events are needed to distinguish nuclear dark matter from WIMPs at the
level in a single experiment. Given the total exposure time of
DEAP-3600 and XENON1T we find that at best a distinction is
possible by these experiments individually, while sensitivity is
reached for a range of parameters by the combination of the two experiments. We
show that future upgrades of these experiments have potential to distinguish a
large range of nuclear dark matter models from that of a WIMP at greater than
.Comment: 23 pages, 7 multipanel figure
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Simulated Milky Way analogues: implications for dark matter direct searches
We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the eagle and apostle projects. We identify MilkyWay analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best _t Maxwellian distribution (with peak speed of 223 { 289 km=s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from
DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved
Evidence for kappa Meson Production in J/psi -> bar{K}^*(892)^0K^+pi^- Process
Based on 58 million BESII J/psi events, the bar{K}^*(892)^0K^+pi^- channel in
K^+K^-pi^+pi^- is studied. A clear low mass enhancement in the invariant mass
spectrum of K^+pi^- is observed. The low mass enhancement does not come from
background of other J/psi decay channels, nor from phase space. Two independent
partial wave analyses have been performed. Both analyses favor that the low
mass enhancement is the kappa, an isospinor scalar resonant state. The average
mass and width of the kappa in the two analyses are 878 +- 23^{+64}_{-55}
MeV/c^2 and 499 +- 52^{+55}_{-87} MeV/c^2, respectively, corresponding to a
pole at (841 +- 30^{+81}_{-73}) - i(309 +- 45^{+48}_{-72}) MeV/c^2.Comment: 17 pages, 5 figure
The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station
The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF)
- …