20 research outputs found

    The rate of synthesis and decomposition of tissue proteins in hypokinesia and increased muscular activity

    Get PDF
    During hypokinesia and physical loading (swimming) of rats, the radioactivity of skeletal muscle, liver, kidney, heart, and blood proteins was determined after administration of radioactive amino acids. Tissue protein synthesis decreased during hypokinesia, and decomposition increased. Both synthesis and decomposition increased during physical loading, but anabolic processes predominated in the total tissue balance. The weights of the animals decreased in hypokinesia and increased during increased muscle activity

    Magnetic properties of Co doped Nb clusters

    Get PDF
    From magnetic deflection experiments on isolated Co doped Nb clusters we made the interesting observation of some clusters being magnetic, while others appear to be non-magnetic. There are in principle two explanations for this behavior. Either the local moment at the Co site is completely quenched or it is screened by the delocalized electrons of the cluster, i.e. the Kondo effect. In order to reveal the physical origin, we conducted a combined theoretical and experimental investigation. First, we established the ground state geometry of the clusters by comparing the experimental vibrational spectra with those obtained from a density functional theory study. Then, we performed an analyses based on the Anderson impurity model. It appears that the non-magnetic clusters are due to a complete quenching of the local Co moment and not due to the Kondo effect. In addition, the magnetic behavior of the clusters can be understood from an inspection of their electronic structure. Here magnetism is favored when the effective hybridization around the chemical potential is small, while the absence of magnetism is signalled by a large effective hybridization around the chemical potential.Comment: 14 pages, 8 figure

    On the question of human life safety in geologically active zones

    Get PDF
    Today geological active zones unite active faults of lithosphere especially earth’s crust and caused by them zones of increased permeability such as paleo-valleys and underground water flows, karst and geological bodies, that are different in terms of composition and structure from the enclosing rocks. There is an evidence that mortality in geologically active zones increases dramatically, mental instability is detected and road accidents are more frequent. The purpose of this paper is to estimate the frequency of suicides among the residents of Saint Petersburg living above the geologically active zones and outside these zones and the influence of geomagnetic and gravitational disturbances on them. The dynamics of suicides among residents of 446 high-rise building in the territory of the Kalininsky and Vasileostrovsky districts of the city of Saint Petersburg is analyzed. Geological structure of those buildings was most studied. From 1999 to 2003 there were 268 suicides among the residents of such buildings. The group A included homes that were at least 40 m above the nearest tectonic fault. Group B included residential buildings located above or in the immediate vicinity of the faults. During the geomagnetic storms, full moon and new moon periods the number of suicides in a group A decreased. Magnetic storms and gravitational disturbances did not affect the frequency of suicides in a group B. There is also no significant correlation between dynamics of suicides and daily values of the K-index of the geomagnetic field, as well as between dynamics of suicides and the 3-hour geomagnetic activity in both groups. Results of studies presented in this paper show that there is no evidence of a significant negative impact of tectonic faults on people living above them

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    Cavity-Dumping a Single Infrared Pulse from a Free-Electron Laser for Two-Color Pump-Probe Experiments

    Full text link
    Electromagnetic radiation in the mid- to far-infrared spectral range represents an indispensable tool for the study of numerous types of collective excitations in solids and molecules. Short and intense pulses in this THz spectral range are, however, difficult to obtain. While wide wavelength-tunability is easily provided by free-electron lasers, the energies of individual pulses are relatively moderate, on the order of microjoules. Here we demonstrate a setup that uses cavity-dumping of a free-electron laser to provide single, picosecond-long pulses in the mid- to far-infrared frequency range. The duration of the Fourier-limited pulses can be varied by cavity detuning, and their energy was shown to exceed 100 {\mu}J. Using the aforementioned infrared pulse as a pump, we have realized a two-color pump-probe setup facilitating single-shot time-resolved imaging of magnetization dynamics. We demonstrate the capabilities of the setup first on thermally-induced demagnetization and magnetic switching of a GdFeCo thin film and second by showing a single-shot time-resolved detection of resonant phononic switching of the magnetization in a magnetic garnet.Comment: The following article has been submitted to/accepted by the Review of Scientific Instruments. After it is published, it will be found at http://rsi.aip.org
    corecore