325 research outputs found

    Effect of gold and nickel co-additives on gas-sensitive characteristics of SnO2 thin-film on exposure to hydrogen and nitrogen dioxide

    Get PDF
    The results of investigation of the gas-sensitive properties of sensors based on the tin dioxide thin films with combined additives of gold and nickel obtained by the DC - magnetron sputtering are presented. The investigated sensors are characterized by a high response to low concentrations of NO2 of 0.45 – 10.23 ppm at temperatures of 50 – 150 °C with response time of 10 s. The sensitivity of sensors to hydrogen appears at the temperature of 250 °C. The hydrogen sensors are characterized by high reproducibility of the measurement results. The obtained results are explained by the synergistic effect of gold and nickel additives, as well as the ability of the Ni to prevent the interaction of hydrogen with lattice oxygen atoms in the subsurface part of tin dioxide

    The Coincidence Limit of the Graviton Propagator in de Donder Gauge on de Sitter Background

    Full text link
    We explicitly work out the de Sitter breaking contributions to the recent solution for the de Donder gauge graviton propagator on de Sitter. We also provide explicit power series expansions for the two structure functions, which are suitable for implementing dimensional regularization. And we evaluate the coincidence limit of the propagator.Comment: 41 pages, uses LaTeX 2e, version 2 has some typoes correcte

    Monitoring of the content of manganese in soils and agricultural plants of the central Chernozem Region of Russia

    Get PDF
    The paper deals with the analysis of long-term observations of the manganese distribution in the soils of the south-western part of the Central Chernozem region of Russia in the Belgorod regio

    Properties of resistive hydrogen sensors as a function of additives of 3d-metals introduced in the volume of thin nanocrystalline SnO2 films

    Get PDF
    Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors’ characteristics increases

    Renormalization of initial conditions and the trans-Planckian problem of inflation

    Get PDF
    Understanding how a field theory propagates the information contained in a given initial state is essential for quantifying the sensitivity of the cosmic microwave background to physics above the Hubble scale during inflation. Here we examine the renormalization of a scalar theory with nontrivial initial conditions in the simpler setting of flat space. The renormalization of the bulk theory proceeds exactly as for the standard vacuum state. However, the short distance features of the initial conditions can introduce new divergences which are confined to the surface on which the initial conditions are imposed. We show how the addition of boundary counterterms removes these divergences and induces a renormalization group flow in the space of initial conditions.Comment: 22 pages, 4 eps figures, uses RevTe

    Tensiometric estimation of material properties of tissue spheroids

    Get PDF
    Tissue spheroids have been proposed to use as building blocks in biofabrication and as bioinks in 3D bioprinting technologies. Tissue fusion is an ubiqious phenomenon during embryonic development. Biomimetic tissue spheroid fusion is a fundamental constructional principle of emerging organ printing technology because closely placed tissue spheroids could fuse into tissue and organ-like constructs in fusion permissive bioprintable hydrogel. From physical point of view tissue spheroids could be considered as a visco-elastic-plastic soft matter or complex fluid. We hypothesize that quantitative estimation of material properties of tissue spheroids using tensiometry could predict their tissue spreading and tissue fusion behavior as well as provide a powerful insight about possible speed of post-printed tissue and organ-like constructs compaction and maturation. Tissue spheroids from human fibroblasts, ovine and human chondrocytes and immortalised human keratinocytes have been biofabricated using non-adhesive cell culture plates (Corning, USA). For estimation of material properties of tissue spheroids commercial tensiometer Microsquisher have been emploied (CellScale, Toronto, Canada). Modulus of elasticity of tissue spheroids have been calculated based on peformed tissue compression tests. In order to identify structural determinants of material properties of tissue spheroids standard perturbants of cytoskeleton such as Cytochalasin D (Sigma, USA) for disruption of microfilaments and Nocodazole (Sigma, USA) for disruption of microtubules have been used. Viability of tissue spheroids have been also estimated and their morphology have been analysed using light microscopy, histochemistry, immunohistochemistry, semithin sections stained wih toluidine blue and transmission and scanning electron microscopy. Kinetics of tissue spheroids spreading on electrospun polyurethane matrices have been analysed. Kinetics of two closely placed tissue spheroids fusion have been analysed in hanging drop. Additionally toxic effect of water solution of paramagnetic gadolinium salt (Omniscan®, GE Health Care, USA) on material properties of tissue spheroids have been investigated. It have been demonstrated that material properties of tissue spheroids biofabricated from different cell types have different modulus of elasticity. Even tissue spheroids biofabricated the same cell types but from different species have different material properties. Incubation with Cytochlasin D dramatically reduces estimated material properties of tissue spheroids. Incubation with Nocodazole does not significantly change material properties of tissue spheroids. Material properties of tissue spheroids from chondrocytes (chondrospheres) correlates very well with increasing deposition and accumulation of extracellular matrix (confirmed by expression of collagen type II and glycosoaminoglycans). The incubation with toxic concentration of gadolinium solution dramatically reduces material properties of chondrospheres. There is no any significant correlation between material properties of tissue spheriods and their spreading kinetics. However, there is a certain correction between material properties of tissue spheroids and their tissue fusion kinetics. Our data demonstrate that beside already well established role of cell adhesion receptors such as cadherin and integrins in the realisation of cell cohesion inside tissue spheroids the structural determinants of material properties of tissue spheroids also include components of cytoskeleton such as actin micofilaments and accumulated extracellular matrix. It is possible to predict post-printing tissue fusion behaviour of tissue spheroids based on preliminary estimation of their material properties. Finally, it have been also shown that material properties of tissue spheroids correlate with their viability. Thus, tensiometry is a valuable method for systematic characterization of material properties of tissue spheroids and for prediction of tissue spheroids post-printed tissue fusion behaviour

    Exact Foldy-Wouthuysen transformation for spin 0 particle in curved space

    Full text link
    Up to now, the only known exact Foldy- Wouthuysen transformation (FWT) in curved space is that concerning Dirac particles coupled to static spacetime metrics. Here we construct the exact FWT related to a real spin-0 particle for the aforementioned spacetimes. This exact transformation exists independently of the value of the coupling between the scalar field and gravity. Moreover, the gravitational Darwin term written for the conformal coupling is one third of the relevant term in the fermionic case.Comment: 10 pages, revtex, improved version to appear in Phys. Rev.

    Manifestation of the Arnol'd Diffusion in Quantum Systems

    Full text link
    We study an analog of the classical Arnol'd diffusion in a quantum system of two coupled non-linear oscillators one of which is governed by an external periodic force with two frequencies. In the classical model this very weak diffusion happens in a narrow stochastic layer along the coupling resonance, and leads to an increase of total energy of the system. We show that the quantum dynamics of wave packets mimics, up to some extent, global properties of the classical Arnol'd diffusion. This specific diffusion represents a new type of quantum dynamics, and may be observed, for example, in 2D semiconductor structures (quantum billiards) perturbed by time-periodic external fields.Comment: RevTex, 4 pages including 7 ps-figures, corrected forma

    Conformal symmetry and deflationary gas universe

    Full text link
    We describe the ``deflationary'' evolution from an initial de Sitter phase to a subsequent Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) period as a specific non-equilibrium configuration of a self-interacting gas. The transition dynamics corresponds to a conformal, timelike symmetry of an ``optical'' metric, characterized by a refraction index of the cosmic medium which continously decreases from a very large initial value to unity in the FLRW phase.Comment: 10 pages, to appear in "Exact Solutions and Scalar Fields in Gravity: Recent Developments", ed. by A. Macias, J. Cervantes-Cota, and C. L\"ammerzahl, Kluwer Academic Publishers 200
    corecore