252 research outputs found

    F-wave versus P-wave Superconductivity in Organic Conductors

    Full text link
    Current experimental results suggest that some organic quasi-one-dimensional superconductors exhibit triplet pairing symmetry. Thus, we discuss several potential triplet order parameters for the superconducting state of these systems within the functional integral formulation. We compare weak spin-orbit coupling fxyzf_{xyz}, pxp_x, pyp_y and pzp_z symmetries via several thermodynamic quantities. For each symmetry, we analyse the temperature dependences of the order parameter, condensation energy, specific heat, and superfluid density tensor.Comment: 5 pages, 4 figure

    Solving variational inequalities defined on a domain with infinitely many linear constraints

    Get PDF
    We study a variational inequality problem whose domain is defined by infinitely many linear inequalities. A discretization method and an analytic center based inexact cutting plane method are proposed. Under proper assumptions, the convergence results for both methods are given. We also provide numerical examples to illustrate the proposed method

    A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the microstructure. Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles

    Dynamics of a Quantum Phase Transition and Relaxation to a Steady State

    Full text link
    We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly the review is divided into two parts. The first part revolves around a quantum version of the Kibble-Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic

    Bioenergetics Failure and Oxidative Stress in Brain Stem Mediates Cardiovascular Collapse Associated with Fatal Methamphetamine Intoxication

    Get PDF
    Background: Whereas sudden death, most often associated with cardiovascular collapse, occurs in abusers of the psychostimulant methamphetamine (METH), the underlying mechanism is much less understood. The demonstration that successful resuscitation of an arrested heart depends on maintained functionality of the rostral ventrolateral medulla (RVLM), which is responsible for the maintenance of stable blood pressure, suggests that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse. We tested the hypothesis that cessation of brain stem cardiovascular regulation because of a loss of functionality in RVLM mediated by bioenergetics failure and oxidative stress underlies the cardiovascular collapse elicited by lethal doses of METH. Methodology/Principal Findings: Survival rate, cardiovascular responses and biochemical or morphological changes in RVLM induced by intravenous administration of METH in Sprague-Dawley rats were investigated. High doses of METH induced significant mortality within 20 min that paralleled concomitant the collapse of arterial pressure or heart rate and loss of functionality in RVLM. There were concurrent increases in the concentration of METH in serum and ventrolateral medulla, along with tissue anoxia, cessation of microvascular perfusion and necrotic cell death in RVLM. Furthermore, mitochondrial respiratory chain enzyme activity or electron transport capacity and ATP production in RVLM were reduced, and mitochondria-derived superoxide anion level was augmented. All those detrimental physiological and biochemica

    Sex-differential genetic effect of phosphodiesterase 4D (PDE4D) on carotid atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphodiesterase 4D (PDE4D) gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT) and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis.</p> <p>Methods</p> <p>Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men). Genotype distribution was compared among the high-risk (plaque index ≥ 4), low-risk (index = 1-3), and reference (index = 0) groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls) with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect.</p> <p>Results</p> <p>In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034) for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008). For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032) for a thicker IMT at the common carotid artery compared with the (AA + AT) genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025) but not in women (p = 0.27).</p> <p>Conclusions</p> <p>The present study demonstrates a sex-differential effect of PDE4D on IMT, plaque index and stroke, which highlights its influence on various aspects of atherogenesis.</p

    Self-consistent field theory of polarized BEC: dispersion of collective excitation

    Full text link
    We suggest the construction of a set of the quantum hydrodynamics equations for the Bose-Einstein condensate (BEC), where atoms have the electric dipole moment. The contribution of the dipole-dipole interactions (DDI) to the Euler equation is obtained. Quantum equations for the evolution of medium polarization are derived. Developing mathematical method allows to study effect of interactions on the evolution of polarization. The developing method can be applied to various physical systems in which dynamics is affected by the DDI. Derivation of Gross-Pitaevskii equation for polarized particles from the quantum hydrodynamics is described. We showed that the Gross-Pitaevskii equation appears at condition when all dipoles have the same direction which does not change in time. Comparison of the equation of the electric dipole evolution with the equation of the magnetization evolution is described. Dispersion of the collective excitations in the dipolar BEC, either affected or not affected by the uniform external electric field, is considered using our method. We show that the evolution of polarization in the BEC leads to the formation of a novel type of the collective excitations. Detailed description of the dispersion of collective excitations is presented. We also consider the process of wave generation in the polarized BEC by means of a monoenergetic beam of neutral polarized particles. We compute the possibilities of the generation of Bogoliubov and polarization modes by the dipole beam.Comment: 16 pages, 15 figures. arXiv admin note: substantial text overlap with arXiv:1106.082
    corecore