33 research outputs found

    Development of X-ray fluorescence technique for the uranium determination in Mongolian coal, coal ash, and phosphate ore

    Get PDF
    The results of the determination of uranium in Mongolian brown coal, coal ash, phosphate rock, and technological samples by X-ray fluorescence (XRF) spectrometry are presented. Technological samples were produced from phosphates by chemical treatment. Powder geological samples and Certified Reference Materials (CRMs) were pressed as tablets. For chosen conditions of the sample preparation procedure analytical figures of merit were carefully studied, as exemplified by the rock and uranium ore Reference Materials. The variance of the total uncertainty is 2 % for uranium in the analyzed samples, and one is 7 % in the rock CRMs. The estimated values of the uranium detection limit for the CRMs are within the interval from 1 to 3 ppm. For the correction of the matrix effects the background standard method was used. Values of the uranium contents in the studied samples vary within the interval from 3.0 to 35.0 ppm. The comparison of the wavelength dispersive (WD) XRF results with the energy dispersive (ED) XRF results and the neutron activation analysis (NAA) was performed. It is demonstrated that the WDXRF have satisfactorily agreed with the EDXRF results and the NAA within the limits of the uncertainty. It is shown that the values of the relative discrepancies between the WDXRF and EDXRF results are in the range of 2.0-18.0 %, and between the WDXRF and the NAA results are in the range of 2.0-20.0 %. These values are less than 30 %, yielding the third category of the precision of the mineral raw material analysis

    Hypothermic organ perfusion in the 2020s: mixing the benefits of low temperatures and dynamic flow outside the body

    Get PDF
    The cold chain supply of donor organs for transplantation has been an integral part of the delivery of transplant clinical services over the past five decades. Within the technologies used for this, hypothermic machine perfusion (HMP) was a concept, which was attractive to maintain organs under optimal conditions outside the body, and many early research studies on HMP were reported. However, it took the arrival of important new concepts to ensure that HMP was logistically feasible and valuable from an organ physiology perspective within the clinical pathways. This review provides details of the current status of HMP across the range of organs transplanted in the clinic, and discusses what new areas might benefit from applying HMP in coming years. In conclusion, HMP is now being used more frequently for clinical organ preservation in a variety of settings. As new therapies such as cell or gene therapy become more common, HMP will continue to play an important facilitator role for optimising organs in the donor pathway

    УдосконалСння ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΠ½ΠΎ-силових якостСй боксСрів 16–17 Ρ€ΠΎΠΊΡ–Π²

    Get PDF
    The paper deals with improving the speed and power as a boxer 16–17. An experimental technique that allows for a personalized and differentiated approach to the training process. Analyze the impact of the developed technique on the physical and functional condition of the boxers. The study showed that the technique has a positive impact on the development and improvement of the speed and power characteristics.РассмотрСны вопросы ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ скоростно-силовых качСств боксСров 16–17Β Π»Π΅Ρ‚. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°, которая позволяСт Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Π² Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠΌ процСссС. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ влияниС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π½Π° физичСскоС ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ состояниС боксСров. ИсслСдованиС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ влияниС Π½Π° Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ скоростно-силовых качСств.Розглянуті питання удосконалСння ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΠ½ΠΎ-силових якостСй боксСрів 16–17Β Ρ€ΠΎΠΊΡ–Π². Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ, яка дозволяє Ρ€Π΅Π°Π»Ρ–Π·ΡƒΠ²Π°Ρ‚ΠΈ Ρ–Π½Π΄ΠΈΠ²Ρ–Π΄ΡƒΠ°Π»ΡŒΠ½ΠΈΠΉ Ρ– Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Ρƒ Ρ‚Ρ€Π΅Π½ΡƒΠ²Π°Π»ΡŒΠ½ΠΎΠΌΡƒ процСсі. ΠŸΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎ Π²ΠΏΠ»ΠΈΠ² Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π½Π° Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΈΠΉ Ρ– Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΠΉ стан боксСрів. ДослідТСння ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‰ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΌΠ°Ρ” ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ Ρ– удосконалСння ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΠ½ΠΎ-силових якостСй

    Transport of neutrons and Ξ³ quanta through a highly filled polymer composite

    Get PDF
    The transport of neutrons and Ξ³ quanta of various energies through a polymer composite based on tungsten-filled track membranes is studie

    Effect of electron irradiation on polyimide composites based on track membranes for space systems

    Get PDF
    The paper presents data on the resistance to electron irradiation of polyimide (PI) composite with nano-sized lead fille

    DYNAMICS OF MORBIDITY OF POPULATION IN IRKUTSK BETWEEN DURING SOCIO-ECONOMIC REFORMS

    Get PDF
    This article presents an analysis of disease trends in selected age groups of the population of Irkutsk for the period of 1992-2009 and it is found that most of these trends are dependent on socio-economic factors. Built polynomial regression models revealed significant increase in morbidity of mental disorders in children, diseases of the nervous system and. the digestive system against opposing change prevalence of adolescent and. adult population for the analyzed period

    Production of Bst polymerase for diagnosis of different infections using loop-mediated isothermal amplification

    Get PDF
    Introduction. The large fragment of DNA polymerase I from Geobacillus stearothermophilus GIM1.543 (Bst DNA polymerase) possesses 5'-3' DNA polymerase activity, 5'-3' displacement activity and high processivity. These properties make it possible to use Bst DNA polymerase in loop-mediated isothermal amplification (LAMP), which provides highly specific amplification of the target sequence and is used for rapid detection of agents causing human infectious diseases. The purpose of the study was to produce a recombinant Bst polymerase enzyme in the bacterial expression system and to assess its properties for LAMP-based diagnostics of infectious diseases. Materials and methods. Expression constructs carrying the Bst polymerase gene were obtained using genetic engineering techniques. Different Escherichia coli strains were used for protein expression. Metal-chelate and gel filtration chromatography techniques were used for protein purification. Catalytic characteristics of the enzyme were assessed in loop-mediated isothermal amplification reactions using AmpliSens SARS-CoV-2-IT, AmpliSens IAV-IT and AmpliSens IBV-IT diagnostic systems designed for high-quality detection of SARS-CoV-2, influenza A virus (IAV) and influenza B virus (IBV) RNA, respectively. Results. The offered protocol for production, extraction and purification of recombinant Bst polymerase makes it possible to produce the enzyme in the bacterial expression system using E. coli cells in a soluble form and reaching the yield up to 20% of the total cell mass. In LAMP reactions, the obtained enzyme demonstrates activity comparable with that of the commercial enzyme Bst 2.0 (NEB). Conclusion. Considering the fast purification and production of the enzyme, the obtained recombinant Bst polymerase can be used in LAMP-based diagnostic kits

    Π’Π ΠžΠœΠ‘ΠžΠ›Π˜Π’Π˜Π§Π•Π‘ΠšΠΠ― И ΠΠΠ’Π˜ΠšΠžΠΠ“Π£Π›Π―ΠΠ’ΠΠΠ― Π’Π•Π ΠΠŸΠ˜Π― ПРИ Π’Π ΠžΠœΠ‘ΠžΠ­ΠœΠ‘ΠžΠ›Π˜Π˜ Π›Π•Π“ΠžΠ§ΠΠžΠ™ ΠΠ Π’Π•Π Π˜Π˜ Π‘ Π’Π«Π‘ΠžΠšΠ˜Πœ И ΠŸΠ ΠžΠœΠ•Π–Π£Π’ΠžΠ§ΠΠ«Πœ РИБКОМ РАННЕЙ Π‘ΠœΠ•Π Π’Π˜. ЧАБВЬ 1. Π›Π•Π’ΠΠ›Π¬ΠΠžΠ‘Π’Π¬ И ΠžΠ‘Π›ΠžΠ–ΠΠ•ΠΠ˜Π―

    Get PDF
    Background The advantages of thrombolytic therapy over anticoagulant therapy in the treatment of acute pulmonary embolism are uncertain. Aim of study To compare primary outcomes and incidence of complications in patients with PE of high and intermediate risk in the course of TLT or ACT and to assess efficacy and safety of TLT and ACT. Study Design Prospective non-randomized study. Intervention was administration of a thrombolytic, the control group consisted of patients who had an anticoagulant introduced. Characteristics of a sample 503 patients with a high and intermediate risk of early death at the age of 16 to 93 years (mean age 61Β±16, МС 63 (51; 74) admitted to the resuscitation department in 2011–2016. Thrombolytics were administered to 222 patients, heparin β€” 281. Results The mortality rate was 10.8% (24/222) when treated with thrombolytic vs. 17.8% (50/281) with anticoagulant treatment; odds ratio was 0.56, 95% confidence interval 0.32; 0.97; p=0.031; P=0.60. The mortality rate in the subgroup with unstable hemodynamics was 30.2% (19/63) with thrombolytics vs. 47.1% (32/68) with anticoagulant treatment; OR 0.49 (0.22; 1.06); p=0.051; P=0.51. The mortality rate in the subgroup of intermediate risk was 3.2% (5/158) vs. 8.4% (18/214); OR 0.36 (0.11; 1.05); p=0.049; P=0.54. The use of thrombolytic was associated with a decrease in mortality: in the age group< 75 (mortality rate 5.5% (10/181) vs. 16.2% (33/204), OR 0.30 (0.14; 0.67); p=0.001, P=0.92); in the subgroup with acute cardiac arrhythmias (mortality rate 4.5% (1/122) vs. 44.0% (11/25); OR 0.061 (0.003; 0.557); p=0.002; P=0.91); in the subgroup with no hospital recurrence of embolism (mortality rate 1.6% (3/188) vs. 12.9% (32/248); OR 0.14 (0.03; 0.46), p< 0.001; P=1.0). With thrombolysis, infarction pneumonia developed less often: in 19.8% (44/222) vs. 28.8% (81/281); OR 0.61 (0.39; 0.95); p=0.022; P=0.64. There were no differences in the incidence of hemorrhagic complications in the treatment of thrombolytics in comparison with anticoagulant therapy: 7.7% (17/222) vs. 10.3% (29/281); OR 0.72 (0.37; 1.40); p=0.35; P=0.17. Severe hemorrhages (including intracranial): 2.7% (6/22) vs. 3.2% (9/281); OR 0.84 (0.26; 2.62); p=0.80; P=0.06. Minor hemorrhages: 5.0% (11/ 222) vs. 7.1% (20/281); OR 0.72 (0.31; 1.63); p=0.36; P=0.16. Intracranial hemorrhages: 0.90% (2/222) vs. 0.71% (2/281); OR 1.27 (0.13; 12.67); p=0.81; P=0.13). There was no difference in the re-occurrence of embolisms: 15.3% (34/222) and 11.7% (33/281); OR 1.36 (0.79; 2.35); p=0.29; P=0.22. Conclusion Thrombolytic therapy appeared to be more effective for survival compared to anticoagulant therapy with no differences in the incidence of complications.ΠΠšΠ’Π£ΠΠ›Π¬ΠΠžΠ‘Π’Π¬ ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²Π° тромболитичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄ антикоагулянтной Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ острой Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ эмболии Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹.ЦСль исслСдования ΠŸΡ€ΠΎΠ²Π΅ΡΡ‚ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… исходов β€” Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ частоты развития ослоТнСний Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с тромбоэмболиСй Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ высокого ΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ риска ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ тромболитичСской (Π’Π›Π’) ΠΈΠ»ΠΈ антикоагулянтной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (АКВ). ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ Π’Π›Π’ ΠΈ АКВ.Π”ΠΈΠ·Π°ΠΉΠ½ исслСдования ΠŸΡ€ΠΎΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Π½Π΅Ρ€Π°Π½Π΄ΠΎΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ исслСдованиС. Π’ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ являлось Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ»ΠΈΡ‚ΠΈΠΊΠ°, Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ контроля β€” ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ вводился антикоагулянт.Π₯арактСристика Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ 503 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² высокого ΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ риска Ρ€Π°Π½Π½Π΅ΠΉ смСрти Π² возрастС ΠΎΡ‚ 16 Π΄ΠΎ 93 Π»Π΅Ρ‚ (срСдний возраст 61Β±16, МС 63 (51; 74) Π»Π΅Ρ‚), ΠΏΠΎΡΡ‚ΡƒΠΏΠΈΠ²ΡˆΠΈΡ… Π² Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π² 2011–2016 Π³Π³; 290 ΠΆΠ΅Π½Ρ‰ΠΈΠ½, 213ΠΌΡƒΠΆΡ‡ΠΈΠ½; Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ»ΠΈΡ‚ΠΈΠΊ вводился 222 Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ, Π³Π΅ΠΏΠ°Ρ€ΠΈΠ½ β€” 281.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π›Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΌ 10,8% (24/222) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 17,8% (50/281) ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ антикоагулянтом; ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ шансов 0,56, 95% Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» 0,32; 0,97; Ρ€=0,031; ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ (P) 0,60. Π›Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅ с Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΎΠΉ ΠΏΡ€ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ»ΠΈΡ‚ΠΈΠΊΠ° 30,2% (19/63) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 47,1% (32/68) ΠΏΡ€ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ антикоагулянта; ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ шансов (ОШ) 0,49 (0,22; 1,06); Ρ€=0,051; Π =0,51. Π›Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ риска 3,1% (5/159) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 8,5% (18/213); ОШ 0,35 (0,11; 1,04); Ρ€=0,048; Π =0,58. ИспользованиС Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ»ΠΈΡ‚ΠΈΠΊΠ° Π±Ρ‹Π»ΠΎ ассоциировано со сниТСниСм Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ: Π² возрастной ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅< 75 Π»Π΅Ρ‚ (Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 5,5% (10/181) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 16,2% (33/204); ОШ 0,30 (0,14; 0,67); Ρ€=0,001; Π =0,92); Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅ с острыми Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ сСрдСчного Ρ€ΠΈΡ‚ΠΌΠ° (Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 4,5% (1/22) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 44,0% (11/25); ОШ 0,061 (0,003; 0,557), Ρ€=0,002; Π =0,91); Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅ с отсутствиСм Π³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Π° эмболии (Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 1,6% (3/188) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 12,9% (32/248); ОШ 0,14 (0,03; 0,46); Ρ€<0,001; Π =1,0). ΠŸΡ€ΠΈ тромболизисС Ρ€Π΅ΠΆΠ΅ Ρ€Π°Π·Π²ΠΈΠ²Π°Π»Π°ΡΡŒ инфарктная пнСвмония: Π² 19,8% (44/222) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 28,8% (81/281); ОШ 0,61(0,39; 0,95); Ρ€=0,022; Π =0,64. НС Π±Ρ‹Π»ΠΎ выявлСно Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π² частотС гСморрагичСских ослоТнСний ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΌ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с антикоагулянтом: 7,7% (17/222) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 10,3% (29/281); ОШ 0,72 (0,37; 1,40); Ρ€=0,35; Π =0,17. ВяТСлыС кровотСчСния (Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΈΠ½Ρ‚Ρ€Π°ΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅): 2,7% (6/22) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 3,2% (9/281); ОШ 0,84 (0,26; 2,62); Ρ€=0,80; Π =0,06. ΠΠ΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ кровотСчСния: 5,0% (11/222) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 7,1% (20/281); ОШ 0,72 (0,31; 1,63); Ρ€=0,36; Π =0,16. Π˜Π½Ρ‚Ρ€Π°ΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΡ€ΠΎ- вотСчСния: 0,90% (2/222) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 0,71% (2/281); ОШ 1,27 (0,13; 12,67); Ρ€=0,81; Π =0,13). НС Ρ€Π°Π·- Π»ΠΈΡ‡Π°Π»Π°ΡΡŒ ΠΈ частота ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½Ρ‹Ρ… эмболий: 15,3% (34/222) ΠΈ 11,7% (33/281); ОШ 1,36 (0,79; 2,35); Ρ€=0,29; Π =0,22. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ВромболитичСская тСрапия ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с антикоагулянтной Π±Ρ‹Π»Π° эффСктивнСй для выТивания; ΠΏΡ€ΠΈ этом статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π² частотС развития ослоТнСний Π½Π΅ Π±Ρ‹Π»ΠΎ выявлСно. ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: лСгочная эмболия, тромболитичСская тСрапия, антикоагулянтная тСрапия, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹ΠΉ риск нСблагоприятного исхода, Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, ΠΈΠ½Ρ‚Ρ€Π°ΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ кровотСчСния, Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ сСрдСчного Ρ€ΠΈΡ‚ΠΌΠ°>< 0,001; Π =1,0). ΠŸΡ€ΠΈ тромболизисС Ρ€Π΅ΠΆΠ΅ Ρ€Π°Π·Π²ΠΈΠ²Π°Π»Π°ΡΡŒ инфарктная пнСвмония: Π² 19,8% (44/222) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 28,8% (81/281); ОШ 0,61(0,39; 0,95); Ρ€=0,022; Π =0,64. НС Π±Ρ‹Π»ΠΎ выявлСно Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π² частотС гСморрагичСских ослоТнСний ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΌ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с антикоагулянтом: 7,7% (17/222) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 10,3% (29/281); ОШ 0,72 (0,37; 1,40); Ρ€=0,35; Π =0,17. ВяТСлыС кровотСчСния (Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΈΠ½Ρ‚Ρ€Π°ΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅): 2,7% (6/22) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 3,2% (9/281); ОШ 0,84 (0,26; 2,62); Ρ€=0,80; Π =0,06. ΠΠ΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ кровотСчСния: 5,0% (11/222) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 7,1% (20/281); ОШ 0,72 (0,31; 1,63); Ρ€=0,36; Π =0,16. Π˜Π½Ρ‚Ρ€Π°ΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ кровотСчСния: 0,90% (2/222) ΠΏΡ€ΠΎΡ‚ΠΈΠ² 0,71% (2/281); ОШ 1,27 (0,13; 12,67); Ρ€=0,81; Π =0,13). НС Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»Π°ΡΡŒ ΠΈ частота ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½Ρ‹Ρ… эмболий: 15,3% (34/222) ΠΈ 11,7% (33/281); ОШ 1,36 (0,79; 2,35); Ρ€=0,29; Π =0,22.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ВромболитичСская тСрапия ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с антикоагулянтной Π±Ρ‹Π»Π° эффСктивнСй для выТивания; ΠΏΡ€ΠΈ этом статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π² частотС развития ослоТнСний Π½Π΅ Π±Ρ‹Π»ΠΎ выявлСно

    >

    No full text

    Deep refinement of tellurium: equipment and process improvement through process simulation

    No full text
    Simulation data have been presented on a process of deep refinement of tellurium based on Authors-developed refinement technique implemented through analysis of the process unit thermodynamical condition using Flow Simulation software, from SolidWorks software product. The technique put forward herein has been implemented in a plant comprising a vertical air-tight reaction chamber arranged inside a multi-zone thermal unit and executing a sequence of refinement stages which use different techniques and are integrated in a single process. The experimental data which have been the basis for calculations have allowed one to determine the boundary conditions of the mathematical model taking into account previous operation experience of the software product used. Temperature profile calculation has been carried out taking into account all the types of heat transfer in the system, the weight / dimensions parameters of system units and the physicochemical properties of refined tellurium, materials of equipment fittings and reactor media. The temperature modes of the process stages have been accepted as the boundary conditions for the thermal calculations, with temperatures being measured at equipment fitting locations at which temperature gages connected with a PID controller have been installed. The simulation of specific refinement process conditions allowed process modes and equipment fitting component design to be corrected. We have developed and produced test models of process and imitation equipment. Analysis of the thermal fields for the final model has shown good agreement with the mathematical model. Equipment upgrading and process parameter improvement on the basis of the simulation results have allowed T-u Grade tellurium (99.95 wt.%) refinement to a 99.99992 wt.% purity by 30 main impurities in the course of physical experiments, the product yield being at least 60%
    corecore