1,107 research outputs found

    The effect of distance on observed mortality, childhood pneumonia and vaccine efficacy in rural Gambia.

    Get PDF
    We investigated whether straight-line distance from residential compounds to healthcare facilities influenced mortality, the incidence of pneumonia and vaccine efficacy against pneumonia in rural Gambia. Clinical surveillance for pneumonia was conducted on 6938 children living in the catchment areas of the two largest healthcare facilities. Deaths were monitored by three-monthly home visits. Children living >5 km from the two largest healthcare facilities had a 2·78 [95% confidence interval (CI) 1·74-4·43] times higher risk of all-cause mortality compared to children living within 2 km of these facilities. The observed rate of clinical and radiological pneumonia was lower in children living >5 km from these facilities compared to those living within 2 km [rate ratios 0·65 (95% CI 0·57-0·73) and 0·74 (95% CI 0·55-0·98), respectively]. There was no association between distance and estimated pneumococcal vaccine efficacy. Geographical access to healthcare services is an important determinant of survival and pneumonia in children in rural Gambia

    Concept of Private Property in Space – an Analysis

    Full text link
    The 1967 Outer Space Treaty specifically states that appropriation of property is not permitted bysovereign nations and the Moon Treaty declares moon and celestial bodies to be the common heritage of allmankind. It is a common notion that the concept of private property is non-existent in view of the existingtreaties .There is a growing opinion that recognition of property rights is essential in space activities. It isadvocated that for the maximum utilization of the resources in space, which may include both commercial andnon-commercial activities, private participation is essential. The paper examines the current position, need andfeasibility for private participation and recommends possible mechanisms for the incorporation of property rightsin Corpus Juris Spatialis

    High Pressure Vibrational Properties of WS2 Nanotubes

    Get PDF
    We bring together synchrotron-based infrared and Raman spectroscopies, diamond anvil cell techniques, and an analysis of frequency shifts and lattice dynamics to unveil the vibrational properties of multiwall WS2 nanotubes under compression. While most of the vibrational modes display similar hardening trends, the Raman-active A1g breathing mode is almost twice as responsive, suggesting that the nanotube breakdown pathway under strain proceeds through this displacement. At the same time, the previously unexplored high pressure infrared response provides unexpected insight into the electronic properties of the multiwall WS2 tubes. The development of the localized absorption is fit to a percolation model, indicating that the nanotubes display a modest macroscopic conductivity due to hopping from tube to tube

    First-order structural transition in the magnetically ordered phase of Fe1.13Te

    Full text link
    Specific heat, resistivity, magnetic susceptibility, linear thermal expansion (LTE), and high-resolution synchrotron X-ray powder diffraction investigations of single crystals Fe1+yTe (0.06 < y < 0.15) reveal a splitting of a single, first-order transition for y 0.12. Most strikingly, all measurements on identical samples Fe1.13Te consistently indicate that, upon cooling, the magnetic transition at T_N precedes the first-order structural transition at a lower temperature T_s. The structural transition in turn coincides with a change in the character of the magnetic structure. The LTE measurements along the crystallographic c-axis displays a small distortion close to T_N due to a lattice striction as a consequence of magnetic ordering, and a much larger change at T_s. The lattice symmetry changes, however, only below T_s as indicated by powder X-ray diffraction. This behavior is in stark contrast to the sequence in which the phase transitions occur in Fe pnictides.Comment: 6 page

    Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    Get PDF
    All rights reserved. The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ-d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials
    corecore