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Abstract

We bring together synchrotron-based infrared and Raman spectroscopies, diamond

anvil cell techniques, and an analysis of frequency shifts and lattice dynamics to un-

veil the vibrational properties of multiwall WS2 nanotubes under compression. While

most of the vibrational modes display similar hardening trends, the Raman-active A1g

breathing mode is almost twice as responsive, suggesting that the nanotube breakdown

pathway under strain proceeds through this displacement. At the same time, the pre-

viously unexplored high pressure infrared response provides unexpected insight into

the electronic properties of the multiwall WS2 tubes. The development of the localized

absorption is fit to a percolation model, indicating that the nanotubes display a modest

macroscopic conductivity due to hopping from tube to tube.

KEYWORDS: WS2 nanotubes, nanoscale transition metal dichalcogenides, high pres-

sure vibrational spectroscopies, percolation
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Transition metal dichalcogenides are attracting tremendous interest due to their exotic

properties and demonstrated applications.1–6 These van der Waals solids form multi-wall

nanotubes (Fig. 1) and nanoparticles,7 and just like graphite, they can be cleaved into

single- and few-layer sheets.8 The tubes and particles are well known to display superior

mechanical stability9 and solid-state lubrication properties10–12 that have lead to their com-

mercial availability and wide use in power generation, heavy industry, and mining, and

potential application in jet engines and medical devices.13–16 Nanotube-reinforced polymer

composites also benefit from the small tube size, modulus, and high aspect ratio,17–19 as well

as excellent dispersion and adhesion to the polymer matrix.20 Under high shearing rates,

however, the tubes and particles begin to deform and exfoliate.15,21 Previous theoretical and

experimental studies give some insight into the lubrication and breakdown mechanisms. For

instance, modeling of the nanotubes under uniaxial pressure predicts a distortion of the

tubes with the innermost layer being the most strongly affected.22 This causes a crack to

propagate from a pinching point of the inner-most layer outward, resulting in two dimen-

sional sheets.22 Shockwave experiments predict a similar mechanism in nanoparticles, except

with the fracture originating in the outermost layer.23 At the same time, low temperature

specific heat measurements show that long wavelength acoustic modes are blocked in these

confined systems.24 This makes the high pressure vibrational properties of transition metal

dichalcogenide nanotubes of great fundamental and practical importance.

10 µm
10 nm

(b) (c)(a)

5 nm

Figure 1: Ambient condition (a) scanning and (b,c) high resolution transmission electron
microscopy images of the WS2 nanotubes used in this work.
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The recent availability of macroscopic quantities of multiwall WS2 nanotubes25 provides

an opportunity to reveal the behavior of different local lattice distortions under pressure

and by so doing test various breakdown pathways. What differentiates our work from prior

efforts26 is that (i) we measure the infrared spectra, and (ii) the Raman response under

pressure is extended from 10 GPa up to 20 GPa. Bringing together synchrotron-based in-

frared and Raman spectroscopies provides a comprehensive view of the different types of

lattice motion, and at the same time, the larger pressure range unveils the distinguishing

characteristics of each feature under compression. Comparison reveals that the A1g vibra-

tion is twice as pressure sensitive as the other features. The superior hardening of this

breathing mode indicates that most of the volume reduction takes place between the lay-

ers. This makes the displacement a strong candidate for driving the nanotube breakdown

pathway under high strain. In fact, transmission electron microscope images after com-

pression confirm that cracks form in the direction of the A1g displacement. These findings

are important for understanding (and potentially blocking) mechanical breakdown path-

ways in transition metal dichalcogenide nanostructures. At the same time, the electronic

properties of the transition metal dichalcogenides are of fundamental and practical impor-

tance,,27–35Bruno2014,Lembke2015,Lorenz2014,Steinhoff2015 with predictions of band gap

closure under pressure to be tested.36 For example, the pressure-induced metallization around

19 GPa due to collapse of the interlayer spacing is already under study in bulk and multilayer

MoS2.37–39 Bulk WS2 is, by contrast, significantly more stable and does not show distortions

or metallization up to 52 GPa.40 The electronic properties of the WS2 nanotubes in this

work are different yet again, with the development of a localized absorption under pressure

that points to modest conductivity above the percolation limit.

Vibrational assignments and pressure trends

Figure 2(a,b) displays the infrared and Raman response of the WS2 nanotubes. At am-

bient conditions, the infrared spectrum exhibits vibrational modes at 356.7, 438.3, and
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Figure 2: (a) Infrared and (b) Raman spectra of WS2 nanotubes at the indicated pressures
focusing on the observed vibrational modes. The number and position of modes are con-
sistent with expectations, and the released spectra are taken after the compression cycle.
(c) Frequency vs pressure for the infrared- (open squares) and Raman-active (closed circles)
modes, displaying the stronger pressure sensitivity of the A1g mode. The unassigned feature
is likely a combination mode rather than a fundamental.

498.6 cm−1 which are assigned as E1u symmetry, A2u symmetry, and a combination mode,

respectively.41,42 The ambient pressure Raman spectrum shows features at 360.0, 415.9, and

420.7 cm−1 which are assigned as E2g, B1u, and A1g symmetry modes, respectively.26,41,43 The

latter are in excellent agreement with previous Raman measurements.26 The displacement

patterns for these modes are summarized in Fig. 3, where the single crystal displacements

are used in approximation of the multi-walled nanotubes. While these are all intralayer

modes,26,28,41–43 i.e. not the rigid layer modes observed at lower frequencies,44–48 the A and

B symmetry modes can still reveal interlayer interactions as their displacements have out-

of-plane components. These assignments and symmetries are brought together in Table 1.

In order to better understand the microscopic aspects of tube breakdown, we investigated

the vibrational properties of the WS2 nanotubes under compression. Tracking the mode fre-

quencies versus pressure shows that all peaks harden systematically up to 20 GPa, in line

with the lack of a structural phase transition in the single crystal.50 Bringing the peak posi-
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Figure 3: (a) The unit cell of WS2 consists of two layers; in each layer W is covalently bonded
to six S atoms in trigonal prismatic coordination,49 which form the walls of the tubes. These
layers comprise the ab-plane, and are stacked along the c axis. Displacement patterns for
the (b,c) infrared- and (d-f) Raman-active phonons.41,42 While these mode patterns and
symmetries formally apply only to the single crystal, they are regularly extended to describe
nanoscale analogs.

tion versus pressure data together in Fig. 2(c) highlights a far more exciting trend. While the

majority of features display similar hardening (with dω/dP between 1 and 1.4 cm−1/GPa),51

the 420.7 cm−1 Raman mode is different, with dω/dP on the order of 2.8 cm−1/GPa (Fig. 2(c)

and Table 1). It is worth noting that while the pressure-induced frequency shift of the A1g

mode (and in fact all of the Raman-active modes in the WS2 tubes) is in perfect agreement

with the work of Staiger et al.26 up to 10 GPa, the extension of our study up to 20 GPa

and the ability to compare with infrared unambiguously reveals the uniqueness of the A1g

displacement. As we shall argue below, the large dω/dP of the Raman-active A1g mode sug-

gests that it may be an integral part of the tube breakdown pathway. That long wavelength

acoustic modes are blocked in confined systems like WS2 nanoparticles is consistent with

this interpretation.24

To quantify these effects, we calculated the mode Grüneisen parameters as γi = −∂lnωi

∂lnV
=

(ωiχT )−1(∂ωi

∂P
), where ωi is the frequency of the ith mode, and χT = −V −1(∂V

∂P
) is the

isothermal compressibility, V is the volume, and P is pressure.40,52 As a reminder, the γi

characterize mode stiffness. Due to the strong polarization of the vibrational modes, we also
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calculate a “directional Grüneisen parameter” using the unit cell parameter pertinent to the

displacement in place of the cell volume.40 This is done by replacing the volume derivative

in the χT expression with that along the specific axis of interest, for instance χT = −c−1( ∂c
∂P

)

for modes with displacements along the c axis. We also calculated the fractional frequency

increase (1/ω)(dω/dP) for each mode, which are in good agreement with the intralayer modes

of similar layered sulfides.47 Moreover, as an approximation, the force constant increase at

20 GPa for each mode can be estimated as ( ω0GPa

ω20GPa
)2. The A1g mode force constant increased

by ≈1.27, whereas the next highest increase is ≈1.15 for the E1u mode. In all cases, we

again see that the A1g mode is unique, with values that are significantly higher than those

for the other modes irrespective of the calculation method (Table 1). We conclude that the

A1g mode is much stiffer than the others. Similar findings are anticipated for the transition

metal dichalcogenide nanoparticles.28

Table 1: Assignments, pressure-induced hardening, mode Grüneisen parameters, and frac-
tional frequency increase for the vibrational modes of WS2 nanotubes.

ωAmbient Activity Symmetry dω/dP Grüneisen Grüneisen (1/ω)(dω/dP)
(cm−1) (cm−1/GPa) parameter a parameter b 10−2 kbar−1

356.7 infrared E1u 1.31 ± 0.02 0.28 0.70 0.037
438.3 infrared A2u 1.44 ± 0.03 0.25 1.67 0.033
498.6 infrared - 1.44 ± 0.08 - - 0.027
360.0 Raman E2g 1.05 ± 0.05 0.21 0.51 0.027
415.9 Raman B1u 1.25 ± 0.03 0.23 1.51 0.030
420.7 Raman A1g 2.79 ± 0.04 0.49 3.25 0.064

a Traditional Grüneisen parameters calculated using the unit cell volume. b“Directional”
Grüneisen parameters calculated using the pressure dependence of the unit cell parameter

a or c based on the displacement.40

Bringing our spectroscopic findings together with an analysis of the displacement patterns

reveals why the 420.7 cm−1 Raman mode in the WS2 nanotubes is so sensitive to applied

pressure. It is well-known that interlayer van der Waals forces are weaker than the intralayer

covalent bonding in transition metal dichalcogenides.1,47 Local lattice distortions in this

direction thus provide a “path of least resistance” for volume reduction. Based on this simple

idea, the A and B symmetry modes are expected show the greatest pressure dependence since
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they contain out-of-layer displacements. Let us consider the A1g mode in this context. The

displacement pattern involves in-phase out-of-plane expansion of the layers, so it is logical

that it is the most affected by compression since the layers have less and less room to expand.

This accounts for the magnitude of the volume and linear Grüneisen parameters in Table 1.

The A2u and B1u modes are different - even though they also probe the elastic properties in

the c direction. Their pressure dependencies are, in fact, similar to the E symmetry modes,

a finding that can again be explained by the displacement patterns. The A2u mode consists

of WS2 units counter-rotating within the ac-plane, whereas in the B1u mode, the WS2 layers

expand out-of-plane and out-of-phase (Fig. 3 (c,f)). As a result, interlayer distance does

not strongly affect these motions. This analysis clearly shows why the A1g vibrational mode

is most sensitive to reduced interlayer distances. It also reveals why this displacement is a

likely driver of the WS2 nanotube breakdown mechanism. We anticipate that this type of

breathing mode will also be important in other nanotubes formed from layered materials,

such as MoS2 or the newly discovered misfit layered compounds,53 under compression.

Breakdown mechanism and comparison to theory

Theoretical modeling of the tubes under uniaxial pressure (perpendicular to the tube axis)

gives insight into the breakdown mechanism.22 The tube layers are predicted to distort

under pressure, with the innermost layer being the most affected. The layers eventually

fracture at a pinching point, and the crack propagates from the inside to the outer most layer

forming two dimensional sheets.22 Shockwave experiments reveal a similar mechanism in WS2

nanoparticles, except the fracture propagates from the outermost layer inwards.9,23,54 These

findings dovetail with our experimental results, which provide direct microscopic evidence

for this mechanism. The large pressure-induced frequency shift of the A1g mode suggests

a strong interlayer component to the breakdown pathway. In fact, transmission electron

microscope images of tubes after compression (Fig. 4) display a remarkable set of fractures

perpendicular to the tube direction, i.e. along the direction of the A1g displacement. The
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fractures appear to propagate from the outside inward, as evidenced by the exfoliation of

the outer layer in some instances (Fig. 4 (c)). It is important to realize that this type of

fracture event is fairly local, probably occurring over a range of pressures and leaving much

of the nanotube unperturbed. If the entire length of the tube were to be damaged at once

there would instead be a sharp discontinuity in the frequency versus pressure trends.

(c)(b)(a)

Figure 4: TEM images of the nanotubes after compression to 20 GPa in the diamond anvil
cell and subsequent release, demonstrating the fractures perpendicular to the tube direction
(a,b) and exfoliation of the outer layer (c).

Although isotropic (three-dimensional) pressure is applied in our work, it is comparable

to strain in that it modifies bond lengths and angles. Density functional theory calculations

predict that the Raman signatures of the in- and out-of-plane modes depend linearly on

axial strain.55 Our data show that the Raman mode frequencies do indeed change linearly

with pressure. The E2g mode is, however, predicted to be more sensitive to tensile strain

than the A1g mode,55 different than the experimental high pressure response in Fig. 2. This

discrepancy probably originates from the tensile strain being applied only along the length of

the nanotube in the calculations, i.e. along the a axis, therefore not affecting the interlayer

spacing as strongly as the isotropic pressure applied in our work. These differences clearly

merit future investigation.56–58
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Electronic properties of multiwall WS2 tubes under pressure

The electronic properties of transition metal dichalcogenides are also attracting sustained

attention. For instance, MoS2 metallizes under pressure in both bulk powder and single

crystal form.37,59 Moreover, simulations of WS2 nanotubes under tensile strain predict band

gap closure above 16% nanotube elongation.55,60 Pressure is clearly a very effective tuning

parameter. We are therefore very interested in any signature or tendency toward novel

electronic behavior in the tubes.
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Figure 5: (a) Infrared spectra at increasing pressures. (b) Absorption difference, ∆α =
α(P )−α(0.08 GPa), showing the increasing background due to improved conductivity under
pressure caused by percolation effects. (c) Absorption difference at 295 cm−1 versus pressure.
The green line is a fit to the percolation model described in the text. Insets: schematic views
of the diamond anvil cell at low and high pressure showing the conductive pathway that forms
as the tubes begin to touch.

In addition to the vibrational modes discussed in prior sections, the infrared response of

the WS2 tubes displays a broad and rising electronic background under pressure that can be

seen both in the absolute absorption and the absorption difference spectra (Fig. 5 (a,b)).61

This localized absorption may be indicative of percolation. We therefore consider what can

be learned from effective medium theories.62,63 While percolation theory usually refers to the

concentration of a conducting material in a non-conducting matrix (like metal nanoparticles
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in glass),64 the analogy can be made to a fixed concentration in a decreasing volume. As

pressure is applied, the nanotubes are forced closer together until they eventually touch

(inset, Fig. 5 (c)). When enough tubes are in contact, a conductive pathway can be created,

so we can think of these experiments as “sweeping concentration”.

To quantify this trend, we tracked the absorption difference at 295 cm−1 versus pressure

(Fig. 5 (c)). In line with percolation modeling of layered networks of semiconducting carbon

nanotubes,65,66 we fit the absorption difference at 295 cm−1 to the sigmoidal Boltzmann

equation, I = A1−A2

[1+exp(P−P0)/∆P ]
+ A2, where I is the percolation probability, A1 is the perco-

lation at ambient pressure, A2 is the high pressure percolation limit, P is pressure, and P0

and ∆P are the pressure at the midpoint of percolation and pressure range from zero to full

percolation, respectively. We find the percolation threshold to be P0=9.3 GPa and predict

that percolation will saturate at 40 GPa.67 Our modeling also indicates that there is some

percolation even at ambient conditions, demonstrating that while the individual WS2 tubes

may be relatively conducting, the ensemble properties are dominated by hopping from tube

to tube. This finding is consistent with both theoretical and experimental conductivities

and band gaps.30,36,68–70 Using the position of the broad electronic background as a measure

of the hopping barrier (Fig. 5 (b)), we find an activation energy of approximately 350 cm−1

(43 meV). Although we measured up to 20 GPa, which is close to the 19 GPa metallic tran-

sition in multilayered MoS2,37,59 there is no evidence for a Drude response in the multiwall

WS2 nanotubes. No metallic behavior was observed in bulk WS2 up to 52 GPa either,40

suggesting critical differences between the Mo and W systems that give additional stability

to WS2 and cause the analogous transition to move to much higher pressures.40

To summarize, we investigated the synchrotron-based infrared and Raman response of

multiwall WS2 nanotubes under pressure and compared our findings with a complemen-

tary symmetry analysis and lattice dynamics calculations. Strikingly, the A1g Raman-active

mode hardens at a rate that is twice that of the other vibrations. This is because the Ag

mode involves WS2 slabs expanding against each other, and decreased interlayer distances
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naturally and preferentially constrict this motion. Transmission electron microscope images

taken after compression support the possible involvement of this mode in the tube breakdown

mechanism. At the same time, the high pressure infrared measurements provide unexpected

insight into the electronic properties of the multiwall WS2 tubes. Percolation is evidenced

from the development of a localized absorption under compression, revealing that an ensem-

ble of nanotubes displays macroscopic conductivity above the percolation limit. We estimate

an activation energy for hopping between tubes of approximately 350 cm−1.

Materials and methods

The WS2 nanotubes used in this study were synthesized by a bottom-up solid-gas reaction,

for which a detailed growth mechanism was reported previously.25 Briefly, tungsten oxide

nanoparticles of ≈100 nm in diameter were used as a precursor to react with hydrogen (H2)

and hydrogen sulfide (H2S) gases at an elevated temperature of 750-840 ◦C. The reaction

consists of two steps, both carried out in the same reaction zone and following each other

in a self-controlled manner. During the first step, the suboxide whiskers of 10-20 micron in

length and 20-120 nm in diameter were grown by the reaction of the precursor oxide with

hydrogen. In the second step, the tungsten oxide whiskers were converted into tungsten

sulfide nanotubes by an outward-inward process. The reaction with H2/H2S started from

the whiskers’ surface, creating the outermost sulfide layer, and continued the sulfidization

of the inner oxide by the slow diffusion mode. The reaction resulted in full oxide-to-sulfide

conversion and hollow WS2 nanotube formation. The formation of the hollow core inside the

nanotubes is due to the difference in specific gravity of the oxide and sulfide phases (7.15 vs.

7.5 g/cm3, respectively). The nanotubes were characterized with scanning and transmission

electron microscopy (Figs. 1 and 4).

The tubes were loaded into diamond anvil cells either neat or with a pressure medium

(neat for Raman, vacuum grease for far infrared, and KBr for middle infrared) for room tem-
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perature measurements. Fluorescence of an annealed ruby ball inside the diamond anvil cell

was used to measure the pressure.71 Due to the small sample size and 500 µm diamond culets,

the National Synchrotron Light Source at Brookhaven National Laboratory was used for its

high brightness infrared light.72 Infrared measurements were taken from 100 to 700 cm−1

with a resolution of 1 cm−1 for all spectra. Raman measurements were performed with a

532 nm diode-pumped solid state laser, with power below 1 mW to prevent sample degra-

dation. Raman spectra were taken from 80 to 800 cm−1 with a resolution of 0.5 cm−1 using

an 1800 line per mm grating, integrated between 60 and 120 seconds, and averaged three

times. All measurements were carried out at 300 K, and standard peak fitting procedures

were employed as appropriate.
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