21 research outputs found

    Enhancing quantum exchanges between two oscillators

    Full text link
    We explore the extent to which two quantum oscillators can exchange their quantum states efficiently through a three-level system which can be spin levels of colored centers in solids. High transition probabilities are obtained using Hamiltonian engineering and quantum control techniques. Starting from a weak coupling approximation, we derive conditions on the spin-oscillator interaction Hamiltonian that enable a high fidelity exhange of quanta. We find that these conditions cannot be fulfilled for arbitrary spin-oscillator coupling. To overcome this limitation, we illustrate how a time-dependent control field applied to the three-level system can lead to an effective dynamic that performs the desired exchange of excitation. In the strong coupling regime, an important loss of fidelity is induced by the dispersion of the excitation onto many Fock states of the oscillators. We show that this detrimental effect can be substantially reduced by suitable control fields, which are computed with optimal control numerical algorithms.Comment: 11 figure

    Singular relaxation of a random walk in a box with a Metropolis Monte Carlo dynamics

    Full text link
    We study analytically the relaxation eigenmodes of a simple Monte Carlo algorithm, corresponding to a particle in a box which moves by uniform random jumps. Moves outside of the box are rejected. At long times, the system approaches the equilibrium probability density, which is uniform inside the box. We show that the relaxation towards this equilibrium is unusual: for a jump length comparable to the size of the box, the number of relaxation eigenmodes can be surprisingly small, one or two. We provide a complete analytic description of the transition between these two regimes. When only a single relaxation eigenmode is present, a suitable choice of the symmetry of the initial conditions gives a localizing decay to equilibrium. In this case, the deviation from equilibrium concentrates at the edges of the box where the rejection probability is maximal. Finally, in addition to the relaxation analysis of the master equation, we also describe the full eigen-spectrum of the master equation including its sub-leading eigen-modes

    Spin-dependent recombination probed through the dielectric polarizability.

    Get PDF
    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana-Brossel resonances observed in atomic physics experiments.This work was supported by the Engineering and Physical Sciences Research Council [Grants No. EP/G060738/1]. A. D. C. acknowledges support from the E. Oppenheimer Foundation and St Catharine's College, Cambridge. S. L. B. is grateful for support from the EPSRC Supergen SuperSolar Project, the Armourers and Brasiers Gauntlet Trust and Magdalene College, Cambridge.This is the final published version of the article. It was originally published in Nature Communications (Bayliss et. al, Nature Communications 2015, 6, 8534, doi:10.1038/ncomms9534). The final version is available at http://dx.doi.org/10.1038/ncomms953

    Spin-dependent recombination probed through the dielectric polarizability.

    Get PDF
    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana-Brossel resonances observed in atomic physics experiments.This work was supported by the Engineering and Physical Sciences Research Council [Grants No. EP/G060738/1]. A. D. C. acknowledges support from the E. Oppenheimer Foundation and St Catharine's College, Cambridge. S. L. B. is grateful for support from the EPSRC Supergen SuperSolar Project, the Armourers and Brasiers Gauntlet Trust and Magdalene College, Cambridge.This is the final published version of the article. It was originally published in Nature Communications (Bayliss et. al, Nature Communications 2015, 6, 8534, doi:10.1038/ncomms9534). The final version is available at http://dx.doi.org/10.1038/ncomms953

    Spin-dependent recombination probed through the dielectric polarizability

    Get PDF
    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana–Brossel resonances observed in atomic physics experiments

    Long range electronic transport in DNA molecules deposited across a disconnected array of metallic nanoparticles

    Get PDF
    We report in detail our experiments on the conduction of λ\lambda DNA molecules over a wide range of temperature deposited across slits in a few nanometers thick platinum film. These insulating slits were fabricated using focused ion beam etching and characterized extensively using near field and electron microscopy. This characterization revealed the presence of metallic Ga nanoparticles inside the slits, as a result of the ion etching. After deposition of λ\lambda DNA molecules, using a protocol that we describe in detail, some of the slits became conducting and exhibited superconducting fluctuations at low temperatures. We argue that the observed conduction was due to transport along DNA molecules, that interacted with the Ga nanoparticles present in the slit. At low temperatures when Ga becomes superconducting, induced superconductivity could therefore be observed. These results indicate that minute metallic particles can easily transfer charge carriers to attached DNA molecules and provide a possible reconciliation between apparently contradictory previous experimental results concerning the length over which DNA molecules can conduct electricity

    Geminate and nongeminate recombination of triplet excitons formed by singlet fission.

    Get PDF
    We report the simultaneous observation of geminate and nongeminate triplet-triplet annihilation in a solution-processable small molecule TIPS-tetracene undergoing singlet exciton fission. Using optically detected magnetic resonance, we identify recombination of triplet pairs directly following singlet fission, as well as recombination of triplet excitons undergoing bimolecular triplet-triplet annihilation. We show that the two processes give rise to distinct magnetic resonance spectra, and estimate the interaction between geminate triplet excitons to be 60 neV.EPSRC [grant no. EP/J017361/1 and EP/G060738/1]. E. Oppenheimer Foundation and St. Catherine's College, Cambridge. NSF [CMMI- 1255494].This is the author accepted manuscript. The final version is available at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.238701

    Site-selective measurement of coupled spin pairs in an organic semiconductor

    Full text link
    From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site-sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet (S=0) and dark triplet, quintet (S=1,2) configurations: this induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3-5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site-selectivity can be achieved for organic spin pairs in a broad range of systems.Comment: 8 pages, article, 7 pages, supporting informatio

    Enhancing quantum exchanges between two oscillators

    No full text
    We explore the extent to which two quantum oscillators can exchange their quantum states efficiently through a three-level system which can be spin levels of colored centers in solids. High transition probabilities are obtained using Hamiltonian engineering and quantum control techniques. Starting from a weak coupling approximation, we derive conditions on the spin-oscillator interaction Hamiltonian that enable a high fidelity exhange of quanta. We find that these conditions cannot be fulfilled for arbitrary spin-oscillator coupling. To overcome this limitation, we illustrate how a time-dependent control field applied to the three-level system can lead to an effective dynamic that performs the desired exchange of excitation. In the strong coupling regime, an important loss of fidelity is induced by the dispersion of the excitation onto many Fock states of the oscillators. We show that this detrimental effect can be substantially reduced by suitable control fields, which are computed with optimal control numerical algorithms
    corecore