39 research outputs found

    Production and characterisation of novel phosphate glass fibre yarns, textiles, and textile composites for biomedical applications

    Get PDF
    This work presents manufacturing, processing and characterisation of the phosphate glass fibre (PGF) products for biomedical applications, including multifilament PGF strands, yarns and textiles, and PGF textile composites. The multifilament production of PGF strands was achieved using a 50-nozzle bushing. PGF yarns, with a linear density of 87 tex, a twist angle of 14° and a tensile strength of 0.29 N/tex, were produced by combining 8 fibre strands using the ring-spinning method. PGF textiles, with a width of 15 mm and a thickness of 0.36 mm, were prepared using an inkle loom. The maximum flexural strength and modulus of unidirectional (UD) composites with a fibre volume fraction of ~17% were 262 ± 11 MPa and 10.4 ± 0.2 GPa, respectively. PGF textile composites with a fibre volume fraction of ~21% exhibited mechanical properties of 176 ± 13 MPa for flexural strength and 8.6 ± 0.6 GPa for flexural modulus. Despite the UD and textile composites having almost an equivalent amount of fibres in the 0 direction, the crimp of the yarns was found to contribute to the significantly lower flexural properties of the textile composites in comparison with the unidirectional (UD) composites. Additionally, the processing conditions such as processing temperature and time were found to have a strong effect on the mechanical properties of the resultant composite products. The number-average molecular weight of PLA was also found to reduce by 13% and 19% after the production of PLA films and PLA plates, respectively, in comparison with the as-received PLA pellets

    Interaction Mechanisms Between the NOX4/ROS and RhoA/ROCK1 Signaling Pathways as New Anti- fibrosis Targets of Ursolic Acid in Hepatic Stellate Cells

    Get PDF
    BackgroundStudies have shown that both NOX4 and RhoA play essential roles in fibrosis and that they regulate each other. In lung fibrosis, NOX4/ROS is located upstream of the RhoA/ROCK1 signaling pathway, and the two molecules are oppositely located in renal fibrosis. Currently, no reports have indicated whether the above mechanisms or other regulatory mechanisms exist in liver fibrosis.ObjectivesTo investigate the effects of the NOX4/ROS and RhoA/ROCK1 signaling pathways on hepatic stellate cell (HSC)-T6 cells, the interaction mechanisms of the two pathways, and the impact of UA on the two pathways to elucidate the role of UA in the reduction of hepatic fibrosis and potential mechanisms of HSC-T6 cell proliferation, migration, and activation.MethodsStable cell lines were constructed using the lentiviral transduction technique. Cell proliferation, apoptosis, migration, and invasion were examined using the MTS, TdT-mediated dUTP nick-end labeling, cell scratch, and Transwell invasion assays, respectively. The DCFH-DA method was used to investigate the ROS levels in each group. RT-qPCR and western blotting techniques were utilized to assess the mRNA and protein expression in each group. CoIP and the Biacore protein interaction analysis systems were used to evaluate protein interactions.ResultsThe NOX4/ROS and RhoA/ROCK1 signaling pathways promoted the proliferation, migration, and activation of HSCs. UA inhibited cell proliferation, migration, and activation by inhibiting the activation of the two signaling pathways, but the mechanism of apoptosis was independent of these two pathways. The NOX4/ROS pathway was upstream of and positively regulated the RhoA/ROCK1 pathway in HSCs. No direct interaction between the NOX4 and RhoA proteins was detected.ConclusionThe NOX4/ROS and RhoA/ROCK1 signaling pathways are two critical signaling pathways in a series of behavioral processes in HSCs, and NOX4/ROS regulates RhoA/ROCK1 through an indirect pathway to control the activation of HSCs. Additionally, NOX4/ROS and RhoA/ROCK1 constitute a new target for UA antifibrosis treatment

    Research capacity of global health institutions in China: a gap analysis focusing on their collaboration with other low-income and middle-income countries.

    Get PDF
    INTRODUCTION: This paper presented qualitative and quantitative data collected on the research capacity of global health institutions in China and aimed to provide a landscaping review of the development of global health as a new discipline in the largest emerging economy of the world. METHODS: Mixed methods were used and they included a bibliometric analysis, a standardised survey and indepth interviews with top officials of 11 selected global health research and educational institutions in mainland China. RESULTS: The bibliometric analysis revealed that each institution had its own focus areas, some with a balanced focus among chronic illness, infectious disease and health systems, while others only focused on one of these areas. Interviews of key staff from each institution showed common themes: recognition that the current research capacity in global health is relatively weak, optimism towards the future, as well as an emphasis on mutual beneficial networking with other countries. Specific obstacles raised and the solutions applied by each institution were listed and discussed. CONCLUSION: Global health institutions in China are going through a transition from learning and following established protocols to taking a more leading role in setting up China's own footprint in this area. Gaps still remain, both in comparison with international institutions, as well as between the leading Chinese institutions and those that have just started. More investment needs to be made, from both public and private domains, to improve the overall capacity as well as the mutual learning and communication within the academic community in China

    Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (USMR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval WI] 68.3-74-0) in 2000 to 37.1 (33.2-41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 live births (26.8-29-5) in 2000 to 17.9 (16.3-19-8) in 2019. In 2019,136 (67%) of 204 countries had a USMR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030,154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05-10.30) in 2000 and 5.05 million (4.27-6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million 95% UI 3.53-4.021) in 2000 to 48% (2.42 million; 2.06-2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71-0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1-27-1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1-35-2.58; 37% 95% UI 32-43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier. Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve USMR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Ursolic acid improves the bacterial community mapping of the intestinal tract in liver fibrosis mice

    No full text
    Liver fibrosis often appears in chronic liver disease, with extracellular matrix (ECM) deposition as the main feature. Due to the presence of the liver-gut axis, the destruction of intestinal homeostasis is often accompanied by the development of liver fibrosis. The inconsistent ecological environment of different intestinal sites may lead to differences in the microbiota. The traditional Chinese medicine ursolic acid (UA) has been proven to protect the liver from fibrosis. We investigated the changes in the microbiota of different parts of the intestine during liver fibrosis and the effect of UA on these changes based on high-throughput sequencing technology. Sequencing results suggest that the diversity and abundance of intestinal microbiota decline and the composition of the microbiota is disordered, the potentially beneficial Firmicutes bacteria are reduced, and the pathways for functional prediction are changed in the ilea and anal faeces of liver fibrosis mice compared with normal mice. However, in UA-treated liver fibrosis mice, these disorders improved. It is worth noting that the bacterial changes in the ilea and anal faeces are not consistent. In conclusion, in liver fibrosis, the microbiota of different parts of the intestines have different degrees of disorder, and UA can improve this disorder. This may be a potential mechanism for UA to achieve anti-fibrosis. This study provides theoretical guidance for the UA targeting of intestinal microbiota for the treatment of liver fibrosis

    Biodegradable-Glass-Fiber Reinforced Hydrogel Composite with Enhanced Mechanical Performance and Cell Proliferation for Potential Cartilage Repair

    No full text
    Polyvinyl alcohol (PVA) hydrogels are promising implants due to the similarity of their low-friction behavior to that of cartilage tissue, and also due to their non-cytotoxicity. However, their poor mechanical resistance and insufficient durability restricts their application in this area. With the development of biodegradable glass fibers (BGF), which show desirable mechanical performance and bioactivity for orthopedic engineering, we designed a novel PVA hydrogel composite reinforced with biodegradable glass fibers, intended for use in artificial cartilage repair with its excellent cytocompatibility and long-term mechanical stability. Using structure characterization and thermal properties analysis, we found hydrogen bonding occurred among PVA molecular networks as well as in the PVA–BGF interface, which explained the increase in crystallinity and glass transition temperature, and was the reason for the improved mechanical performance and better anti-fatigue behavior of the composites in comparison with PVA. The compressive strength and modulus for the PBGF-15 composite reached 3.05 and 3.97 MPa, respectively, equaling the mechanical properties of human articular cartilage. Moreover, the increase in BGF content was found to support the proliferation of chondrocytes in vitro, whilst the PVA hydrogel matrix was able to control the ion concentration by adjusting the ions released from the BGF. Therefore, this novel biodegradable-glass-fiber-reinforced hydrogel composite possesses excellent properties for cartilage repair with potential in medical application

    The structure, degradation and fibre drawing properties of phosphate based glass fiber: the effects of Fe03 and B203 addition

    No full text
    The previous research has reported the phosphate based glass has potential medical application due to excellent cytocompatibility and controllable degradability. In this study, Six novel phosphate based glass formulations were produced as two glass system 48P(2)O(5)-12B(2)O(5)-(25-X)MgO-14CaO-1Na(2)O-(X)Fe2O3 (X = 6, 8, 10) and 45P(2)O(5)-(Y)B2O3(32-Y)MgO-14CaO-1Na(2)O-8Fe(2)O(3) (Y = 12, 15, 20) for glass fibre drawing study, whilst five of them were converted to be fibre successfully. The PBG with 20 mol. % B2O3 was difficult to form fibre with stable meniscus due to high viscosity. The mechanical properties of the fibres were found to increase with increasing B2O3 or Fe2O3 content in the glass. The highest tensile strength (1253 +/- 92 MPa) was recorded for 48P(2)O(5) 12B(2)O(3)-15MgO-14CaO-1Na(2)O-10Fe(2)O(3) glass fibres. The assessment of change in mechanical properties of glass fibres was performed in phosphate buffer saline (PBS) at 37 degrees C for 28 days. The mass loss and dissolution rate of glass fibre was reduced with an increase of Fe2O3 content from 6 to 10 mol. % whilst an increase of dissolution rate was observed with increasing B2O3 content. During the degradation period, a huge decrease on tensile strength was observed, and 20 similar to 40 % tensile strength was residual by 28-day. Whereas, no significant change (P > 0.05) in the tensile modulus was revealed
    corecore