21 research outputs found

    Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types

    Get PDF
    Subsoiling has been widely used all over the world as an important operation method of no-tillage farming. For energy-saving and life-extension, the tillage resistance and wear-corrosion of subsoilers have attracted wide attention. In this study, the tillage resistance, soil disturbance, wear and corrosion of subsoiler with S-T-SK-2# biomimetic structures (S means subsoiler; T means tine; SK means shank; 2#, h/s=0.57, h=5 mm and α=45°.) and self-healing coating under two seasons, two locations with different soil properties (black loam and clay soil) and subsoiling speeds (2 km/h and 3.6 km/h) were investigated. The soil moisture content and compactness affected the tillage resistance and wear-corrosion. The tillage resistance and degree of corrosion on all subsoilers were much larger in clay soil than that in black loam soil. Compared with S-T-SK-2#, the tillage reduction rate of C-S-T-SK-2# (S-T-SK-2# with self-healing coating) was up to 14.32% in clay soil under the speed of 2 km/h. The significance tests of regression equation results showed that subsoiler type and soil properties had a significant impact on soil disturbance coefficient, swelling of total soil layer, bulkiness of the plough pan. It is of a guiding significance for the analysis of soil disturbance. Synergism mechanism of subsoiler coupling with biomimetic structures and self-healing coating was analyzed in following. It depicted the guiding effect of biomimetic structure and the shield function of self-healing coating, resulting in anticorrosion and wear resistance of subsoiler

    Nutrient metabolism, mass balance, and microbial structure community in a novel denitrifying phosphorus removal system based on the utilizing rules of acetate and propionate

    Get PDF
    The effect of acetate (HAc) and propionate (HPr) on denitrifying phosphorus removal (DPR) was evaluated in a novel two-sludge A2/O - MBBR (anaerobic/anoxic/oxic - moving bed biofilm reactor) system. Results showed that it was the carbon source transformation and utilization especially the composition of poly-ÎČ-hydroxyalkanoates (PHA) (mainly poly-ÎČ-hydroxybutyrate (PHB) and poly-bhydroxyvalerate (PHV)) decided DPR performance, where the co-exist of HAc and HPr promoted the optimal nitrogen (85.77%) and phosphorus (91.37%) removals. It facilitated the balance of PHB and PHV and removing 1 mg NO3− (PO43−) consumed 3.04–4.25 (6.84–9.82) mgPHA, where approximately 40–45% carbon source was saved. Mass balance revealed the main metabolic pathways of carbon (MAn,C (consumed amount in anaerobic stage) and MA-O,C (consumed amount in anoxic and oxic stages): 66.38–76.19%), nitrogen (MDPR,N (consumed amount in DPR): 57.01–65.75%), and phosphorus (MWS,P (discharged amount in waste sludge): 81.05–85.82%). Furthermore, the relative abundance and microbial distribution were assessed to elucidate DPR mechanism (e.g. Accumulibacter, Acinetobacter, Dechloromonas, Competibacter, and Defluviicoccus) in the A2/O reactor and nitrification performance (e.g. Nitrosomonas, Nitrosomonadaceae and Nitrospira) in the MBBR. Carbon source was demonstrated as the key point to stimulate the biodiversity and bioactivity related to DPR potential, and the operational strategy of carbon source addition was proposed based on the utilizing rules of HAc and HPr

    Characterization of an alpha Amylase from the honeybee chalk brood pathogen Ascosphaera apis

    Get PDF
    The insect pathogenic fungus, Ascosphaera apis, is the causative agent of honeybee chalk brood disease. Amylases are secreted by many plant pathogenic fungi to access host nutrients through the metabolism of starch, and the identification of new amylases can have important biotechnological applications. Production of amylase by A. apis in submerged culture was optimized using the response surface method (RSM). Media composition was modeled using Box–Behnken design (BBD) at three levels of three variables, and the model was experimentally validated to predict amylase activity (R2 = 0.9528). Amylase activity was highest (45.28 ± 1.16 U/mL, mean ± SE) in media composed of 46 g/L maltose and1.51 g/L CaCl2 at a pH of 6.6, where total activity was ~11-fold greater as compared to standard basal media. The enzyme was purified to homogeneity with a 2.5% yield and 14-fold purification. The purified enzyme had a molecular weight of 75 kDa and was thermostable and active in a broad pH range (> 80% activity at a pH range of 7–10), with optimal activity at 55 °C and pH = 7.5. Kinetic analyses revealed a Km of 6.22 mmol/L and a Vmax of 4.21 ÎŒmol/mL·min using soluble starch as the substrate. Activity was significantly stimulated by Fe2+ and completely inhibited by Cu2+, Mn2+, and Ba2+ (10 mM). Ethanol and chloroform (10% v/v) also caused significant levels of inhibition. The purified amylase essentially exhibited activity only on hydrolyzed soluble starch, producing mainly glucose and maltose, indicating that it is an endo-amylase (α-amylase). Amylase activity peaked at 99.38 U/mL fermented in a 3.7 L-bioreactor (2.15-fold greater than what was observed in flask cultures). These data provide a strategy for optimizing the production of enzymes from fungi and provide insight into the α-amylase of A. apis

    Optimized Unilateral Magnetic Resonance Sensor with Constant Gradient and Its Applications in Composite Insulators

    No full text
    In this study, an optimized unilateral magnetic resonance sensor with a three-magnet array is presented for assessing the aging of composite insulators in power grids. The sensor’s optimization involved enhancing the static magnetic field strength and the homogeneity of the RF field while maintaining a constant gradient in the direction of the vertical sensor surface and maximizing homogeneity in the horizontal direction. The center layer of the target area was positioned 4 mm from the coil’s upper surface, resulting in a magnetic field strength of 139.74 mT at the center point of the area, with a gradient of 2.318 T/m and a corresponding hydrogen atomic nuclear magnetic resonance frequency of 5.95 MHz. The magnetic field uniformity over a 10 mm × 10 mm range on the plane was 0.75%. The sensor measured 120 mm × 130.5 mm × 76 mm and weighed 7.5 kg. Employing the optimized sensor, magnetic resonance assessment experiments were conducted on composite insulator samples utilizing the CPMG (Carr–Purcell–Meiboom–Gill) pulse sequence. The T2 distribution provided visualizations of the T2 decay in insulator samples with different degrees of aging

    A novel fabrication technique for three-dimensional concave nanolens arrays

    No full text
    A novel facile technique is proposed for fabricating three-dimensional (3D) concave nanolens arrays on a silicon substrate. The technique leverages an inherent characteristic of the polymethyl methacrylate (PMMA) resist during inductively coupled plasma (ICP) etching. The tendency for plasma ions to accumulate at the edge of the PMMA resist helps create a local electric field that causes the ions to etch the sidewall of the PMMA resist. This process progressively increases the uncovered area, resulting in a graded etched depth or a concave structure in the substrate. In addition, using a given ICP etching recipe, the time required for a PMMA resist to be removed by sidewall etching is determined by its width. The use of PMMA resist of different widths enables one to achieve structures of varying etched depths and thus a 3D lens array. Optical characteristics of the fabricated nanolens were simulated using the FDTD (Finite-difference time-domain) method, and focal lengths ranging from 150 nm to 420 nm were obtained. This type of nanolens is very useful in ultraviolet optical devices and CMOS image sensors.Published versio

    Nitric Oxide Nanosensors for Predicting the Development of Osteoarthritis in Rat Model

    No full text
    Osteoarthritis (OA) is a chronic arthritic disease that causes the overproduction of inflammatory factors such as nitric oxide (NO). This study develops a NO nanosensor to predict the OA development. The nanosensor is synthesized by encapsulating the NO sensing molecules (i.e., 4-amino-5-methylamino-2â€Č,7â€Č-difluorofluorescein Diaminofluorescein-FM (DAF-FM)) within the biodegradable poly­(lactic-<i>co</i>-glycolic acid) nanoparticles. In vitro, the nanosensor allows the monitoring of the NO release in interleukin-1ÎČ-stimulated chondrocytes and the alleviated effect of N<sup>G</sup>-monomethyl-l-arginine (a NO inhibitor) and andrographolide (an anti-inflammatory agent). In the rat OA model, it permits the quantification of NO level in joint fluid. The proposed NO nanosensor may facilitate a noninvasive and real-time evaluation of the OA development

    Organic Photodetectors with Extended Spectral Response Range Assisted by Plasmonic Hot-Electron Injection

    No full text
    Organic photodetectors (OPDs) have aroused intensive attention for signal detection in industrial and scientific applications due to their advantages including low cost, mechanical flexibility, and large-area fabrication. As one of the most common organic light-emitting materials, 8-hydroxyquinolinato aluminum (Alq3) has an absorption wavelength edge of 460 nm. Here, through the introduction of Ag nanoparticles (Ag NPs), the spectral response range of the Alq3-based OPD was successfully extended to the near-infrared range. It was found that introducing Ag NPs can induce rich plasmonic resonances, generating plenty of hot electrons, which could be injected into Alq3 and then be collected. Moreover, as a by-product of introducing Ag NPs, the dark current was suppressed by around two orders of magnitude by forming a Schottky junction on the cathode side. These two effects in combination produced photoelectric signals with significant contrasts at wavelengths beyond the Alq3 absorption band. It was found that the OPD with Ag NPs can stably generate electric signals under illumination by pulsed 850 nm LED, while the output of the reference device included no signal. Our work contributes to the development of low-cost, broadband OPDs for applications in flexible electronics, bio-imaging sensors, etc

    Intercomparisons on the Vertical Profiles of Cloud Microphysical Properties From CloudSat Retrievals Over the North China Plain

    No full text
    International audienceAbstract Vertical profiles of cloud microphysical properties importantly determine the lifetime and precipitation rate of clouds. The 94‐GHz cloud profiling radar (CPR) onboard the CloudSat satellite can measure the vertical profile of radar reflectivity, from which the microphysical properties of cloud can be retrieved. The retrievals bear variations due to various assumptions and auxiliary products used. This study targets on the mid‐latitude clouds in the northern hemisphere, and intercompares the CloudSat products describing the vertical profiles of cloud microphysics and evaluate the uncertainties for each retrieval algorithm, with further evaluation by aircraft in‐situ observations over the North China Plain region during 2013–2017. For those retrieval products performing phase apportion, the ambient temperature‐based linear apportioning on mixed‐phase clouds can produce reasonable estimation on ice water content, apart from the heavily precipitating clouds. The retrieved liquid water content constrained by cloud optical depth well matched in‐situ observations, however its effective size is overestimated (hereby underestimating the number concentration of water droplets) because of the influence of larger precipitating hydrometeors on size distribution. The CPR‐only retrieval can well produce the effective diameter and number concentration of ice for deep convection clouds, but using additional lidar constraint underestimates the effective diameter due to the intense attenuation by thick clouds. The analysis here suggests the appropriate parameters from various products for different cloud types, and provides guidance for future development of retrieval algorithms on vertical profiles of cloud microphysical properties

    Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola

    No full text
    Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1–6) and three hopane triterpenes (7–9), were isolated from H. lauricola ethyl acetate (EtOAc) ex-tracts for the first time. All compounds were tested for various in vitro bioactivities. Six com-pounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54–26.06 ÎŒM. Antimicrobial activity bioas-says revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bac-teria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 ÎŒg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 ÎŒg/mL. Compounds 4, 5, and 9 also dis-played free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and su-peroxide (O2−), with IC50 values of compounds 2, 4, and 6 ~3.45–14.04 ÎŒg/mL and 22.87–53.31 ÎŒg/mL towards DPPH and O2−, respectively. These data provide an insight into the biopharmaceu-tical potential of terpenoids from this group of fungal insect symbionts and plant pathogens
    corecore