644 research outputs found

    Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems

    Get PDF
    Some sufficient conditions, which are valid for stability check of fractional-order nonlinear systems, are given in this paper. Based on these results, the synchronization of two fractional-order chaotic systems is investigated. A novel fractional-order sliding surface, which is composed of a synchronization error and its fractional-order integral, is introduced. The asymptotical stability of the synchronization error dynamical system can be guaranteed by the proposed fractional-order sliding mode controller. Finally, two numerical examples are given to show the feasibility of the proposed methods

    Structure of nanoscale-pitch helical phases: blue phase and twist-bend nematic phase resolved by resonant soft X-ray scattering

    Get PDF
    Periodic structures of phases with orientational order of molecules, but homogenous electron density distribution: a short pitch cholesteric, blue phase and twist-bend nematic phase, were probed by a resonant soft x-ray scattering (RSoXS) at the carbon K-edge. The theoretical model shows that in case of a simple heliconical nematic structure two resonant signals corresponding to the full and half pitch band should be present, while only the full pitch band is observed in experiment. This suggests that the twist-bend nematic phase has complex structure with a double-helix, built of two interlocked, shifted helices. We confirm that the helical pitch in the twist-bend nematic phase is in a 10 nm range, for both, the chiral and achiral materials. We also show that the symmetry of a blue phase can unambiguously be determined through a resonant enhancement of x-ray diffraction signals, by including polarization effects, which are found to be an important indicator in phase structure determination

    Geometric Multi-Model Fitting by Deep Reinforcement Learning

    Full text link
    This paper deals with the geometric multi-model fitting from noisy, unstructured point set data (e.g., laser scanned point clouds). We formulate multi-model fitting problem as a sequential decision making process. We then use a deep reinforcement learning algorithm to learn the optimal decisions towards the best fitting result. In this paper, we have compared our method against the state-of-the-art on simulated data. The results demonstrated that our approach significantly reduced the number of fitting iterations

    Vision-Enhanced Semantic Entity Recognition in Document Images via Visually-Asymmetric Consistency Learning

    Full text link
    Extracting meaningful entities belonging to predefined categories from Visually-rich Form-like Documents (VFDs) is a challenging task. Visual and layout features such as font, background, color, and bounding box location and size provide important cues for identifying entities of the same type. However, existing models commonly train a visual encoder with weak cross-modal supervision signals, resulting in a limited capacity to capture these non-textual features and suboptimal performance. In this paper, we propose a novel \textbf{V}isually-\textbf{A}symmetric co\textbf{N}sisten\textbf{C}y \textbf{L}earning (\textsc{Vancl}) approach that addresses the above limitation by enhancing the model's ability to capture fine-grained visual and layout features through the incorporation of color priors. Experimental results on benchmark datasets show that our approach substantially outperforms the strong LayoutLM series baseline, demonstrating the effectiveness of our approach. Additionally, we investigate the effects of different color schemes on our approach, providing insights for optimizing model performance. We believe our work will inspire future research on multimodal information extraction.Comment: 14 pages, 6 figures, Accepted by EMNLP202

    BerDiff: Conditional Bernoulli Diffusion Model for Medical Image Segmentation

    Full text link
    Medical image segmentation is a challenging task with inherent ambiguity and high uncertainty, attributed to factors such as unclear tumor boundaries and multiple plausible annotations. The accuracy and diversity of segmentation masks are both crucial for providing valuable references to radiologists in clinical practice. While existing diffusion models have shown strong capacities in various visual generation tasks, it is still challenging to deal with discrete masks in segmentation. To achieve accurate and diverse medical image segmentation masks, we propose a novel conditional Bernoulli Diffusion model for medical image segmentation (BerDiff). Instead of using the Gaussian noise, we first propose to use the Bernoulli noise as the diffusion kernel to enhance the capacity of the diffusion model for binary segmentation tasks, resulting in more accurate segmentation masks. Second, by leveraging the stochastic nature of the diffusion model, our BerDiff randomly samples the initial Bernoulli noise and intermediate latent variables multiple times to produce a range of diverse segmentation masks, which can highlight salient regions of interest that can serve as valuable references for radiologists. In addition, our BerDiff can efficiently sample sub-sequences from the overall trajectory of the reverse diffusion, thereby speeding up the segmentation process. Extensive experimental results on two medical image segmentation datasets with different modalities demonstrate that our BerDiff outperforms other recently published state-of-the-art methods. Our results suggest diffusion models could serve as a strong backbone for medical image segmentation.Comment: 14 pages, 7 figure

    A Spatio-temporal Decomposition Method for the Coordinated Economic Dispatch of Integrated Transmission and Distribution Grids

    Full text link
    With numerous distributed energy resources (DERs) integrated into the distribution networks (DNs), the coordinated economic dispatch (C-ED) is essential for the integrated transmission and distribution grids. For large scale power grids, the centralized C-ED meets high computational burden and information privacy issues. To tackle these issues, this paper proposes a spatio-temporal decomposition algorithm to solve the C-ED in a distributed and parallel manner. In the temporal dimension, the multi-period economic dispatch (ED) of transmission grid (TG) is decomposed to several subproblems by introducing auxiliary variables and overlapping time intervals to deal with the temporal coupling constraints. Besides, an accelerated alternative direction method of multipliers (A-ADMM) based temporal decomposition algorithm with the warm-start strategy, is developed to solve the ED subproblems of TG in parallel. In the spatial dimension, a multi-parametric programming projection based spatial decomposition algorithm is developed to coordinate the ED problems of TG and DNs in a distributed manner. To further improve the convergence performance of the spatial decomposition algorithm, the aggregate equivalence approach is used for determining the feasible range of boundary variables of TG and DNs. Moreover, we prove that the proposed spatio-temporal decomposition method can obtain the optimal solution for bilevel convex optimization problems with continuously differentiable objectives and constraints. Numerical tests are conducted on three systems with different scales, demonstrating the high computational efficiency and scalability of the proposed spatio-temporal decomposition method
    corecore