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Some sufficient conditions, which are valid for stability check of fractional-order nonlinear systems, are given in this paper. Based on
these results, the synchronization of two fractional-order chaotic systems is investigated. A novel fractional-order sliding surface,
which is composed of a synchronization error and its fractional-order integral, is introduced. The asymptotical stability of the
synchronization error dynamical system can be guaranteed by the proposed fractional-order sliding mode controller. Finally, two
numerical examples are given to show the feasibility of the proposed methods.

1. Introduction

In the past two decades, synchronization of chaotic systems
(CSs) has received more and more attention, and a lot of
interestingworks have been done, which have potential appli-
cation values in secret communications, signal processing,
and complex systems [1–9]. Recently, control and synchro-
nization of fractional-order chaotic systems (FOCSs), which
can be seen as a generalization of the integer-order CSs,
have been studied extensively. A lot of controllers have been
implemented such as active control [10], feedback control [11],
sliding mode control [12, 13], adaptive control, [14, 15], and
adaptive fuzzy control [8, 9, 16].

It is well known that slidingmode control (SMC) is a very
effective control method to cope with system uncertainties
and external disturbances [17–27]. Consequently, it has been
used to synchronize FOCSs. For example, a novel FOCS
and its SMC have been studied in [28]; SMC of a 3D
FOCS using a fractional-order switching type controller
is investigated in [29]. Using a hierarchical fuzzy neural
network, [30] proposed a new adaptive SMC method for the
synchronization of uncertain FOCSs. On the other hand, it
is well known that, in stability analysis of nonlinear systems,
quadratic Lyapunov functions are most commonly used.
However, [31, 32] show that it is not realistic to use quadratic

Lyapunov functions in the stability analysis of fractional-
order nonlinear systems due to the complicated infinite series
produced by differentiating the squared Lyapunov function
with fractional order. It should be mentioned that, in most
aforementioned works, the stability analysis is given based
on fractional Lyapunov methods. How to establish some
stability analysis methods according to the model of FOCSs
is a meaningful work.

In control theory, stability analysis is an essential aspect.
With respect to fractional-order linear systems, the stability
condition was firstly investigated in [33]. Then, using LMI,
some sufficient conditions are given in [34]. The related
results on the stability analysis of fractional-order nonlinear
systems can be seen in [35–41] and the references therein.
It should be pointed out that the stability criterion for
fractional-order nonlinear systems requires further study.
Thus, proposing some new stability criterion for FOCSs is
necessary. In this paper, we will give two sufficient conditions
for the stability of a class of FOCSs. Based on these theorems,
a fractional-order SMC will be given. The contributions of
this paper are concluded as follows: (1) two sufficient con-
ditions are proposed to check the stability of the fractional-
order nonlinear system and (2) a novel fractional-order SMC
is given, and the stability of the closed-loop system is proven
rigorously.
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2. Preliminaries

In this section, we will give some properties of fractional
calculus.The 𝑞th fractional-order integral is expressed as [42]

D
𝑞𝑓 (𝑡) = 1Γ (𝑞) ∫

𝑡

0
(𝑡 − 𝜏)𝑞−1 𝑓 (𝜏) 𝑑𝜏. (1)

The Caputo fractional derivative is given by

D
𝑞𝑓 (𝑡) = 1Γ (𝑛 − 𝑞) ∫

𝑡

0
(𝑡 − 𝜏)𝑛−𝑞−1 𝑓(𝑛) (𝜏) 𝑑𝜏, (2)

where 𝑞 is the fractional order satisfying 𝑛 − 1 ≤ 𝑞 < 𝑛.
The Laplace transform of Caputo fractional derivative is

given as [42]

∫∞
0

𝑒−𝑠𝑡D𝑞𝑥 (𝑡) 𝑑𝑡 = 𝑠𝑞𝐹 (𝑠) − 𝑛−1∑
𝑘=0

𝑠𝑞−𝑘−1𝑥(𝑘) (0) , (3)

where 𝐹(𝑠) = L{𝑓(𝑡)}. In the next section, we will use the
following results.

The Mittag-Leffler function is given by

𝐸𝛽
1
,𝛽
2
(𝑧) = ∞∑

𝑘=0

𝑧𝑘Γ (𝛽1𝑘 + 𝛽2) , (4)

where 𝛽1, 𝛽2 > 0 and 𝑧 ∈ 𝐶. The Laplace transform of (4) is

L {𝑡𝛽2−1𝐸𝛽
1
,𝛽
2

(−𝑎𝑡𝛽1)} = 𝑠𝛽1−𝛽2𝑠𝛽1 + 𝑎 . (5)

Lemma 1 (see [42]). Let 𝐴 ∈ 𝑅𝑛×𝑛, 0 < 𝛼 ≤ 1, 𝛽 be an
arbitrary real number, and 𝑏 > 0 be a real constant; then,

𝐸𝛼,𝛽 (𝐴) ≤ 𝑏1 + ‖𝐴‖ , (6)

where 𝜇 ≤ |arg(eig(𝐴))| ≤ 𝜋 with 𝜇 ∈ 𝑅 satisfying 𝜋𝛼/2 < 𝜇 <
min{𝜋, 𝜋𝛼}.
Lemma 2 (see [43]). Let 𝑡 ∈ [0, 𝑇] and

𝑥 (𝑡) ≤ ℎ (𝑡) + ∫𝑡
0
𝑘 (𝜏) 𝑥 (𝜏) 𝑑𝜏, (7)

where 𝑘(𝑡) ≥ 0. Then, one has

𝑥 (𝑡) ≤ ℎ (𝑡) + ∫𝑡
0
𝑘 (𝜏) ℎ (𝜏) exp [∫𝑡

𝜏
𝑘 (𝑢) 𝑑𝑢] 𝑑𝜏. (8)

Lemma3 (see [42, 44]). Let 0 < 𝛼 < 2.𝛽 is a complex number,
and 𝜇 is a real number. If

𝜋𝛼2 < 𝜇 < min {𝜋, 𝜋𝛼} , (9)

then, for an arbitrary integer 𝑛 ≥ 1, the following expansion
holds:

𝐸𝛼,𝛽 (𝑧) = − 𝑛∑
𝑗=1

1Γ (𝛽 − 𝛼𝑗) 𝑧𝑗 + ∘ ( 1
|𝑧|𝑛+1) . (10)

3. Main Results

3.1. Some Sufficient Conditions for the Stability Analysis of
Fractional-Order Systems. Consider a class of fractional-
order systems described by

D
𝑞𝑥𝑗 (𝑡) = 𝑐𝑗𝑥𝑗 (𝑡) + 𝑛∑

𝑖=1

𝑎𝑖𝑗𝑓𝑖 (𝑥𝑖 (𝑡)) , (11)

or equivalently

D
𝑞𝑥 (𝑡) = 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) , (12)

where 𝑗 = 1, 2, . . . , 𝑛, 0 < 𝑞 < 1, and 𝑥(𝑡) =[𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)]𝑇 ∈ R𝑛 is the state vector; 𝑓(𝑥(𝑡)) =[𝑓1(𝑥1(𝑡)), 𝑓2(𝑥2(𝑡)), . . . , 𝑓𝑛(𝑥𝑛(𝑡))]𝑇 ∈ R𝑛 represents a
smooth nonlinear function, 𝐴 = {𝑎𝑖𝑗}, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =1, 2, . . . , 𝑛, and 𝐶 = diag(𝑐𝑖) are two matrices. Then, we have
the following results.

Theorem 4. If 𝑐𝑖 < 0 and the nonlinear function is bounded,
that is, there exists a constant𝑚𝑖 > 0 such that

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥𝑖 (𝑡))󵄨󵄨󵄨󵄨 ≤ 𝑚𝑖, (13)

then there exist two positive constants 𝑡0 and𝑀 such that

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑀 (14)

for all 𝑡 > 𝑡0.
Proof. It follows from (11) that

𝑋𝑖 (𝑠) = 𝑠𝑞−1𝑠𝑞 − 𝑐𝑖 𝑥𝑖 (0) +
1𝑠𝑞 − 𝑐𝑖
𝑛∑
𝑗=1

𝑎𝑖𝑗L (𝑓𝑗 (𝑥𝑗 (𝑡))) . (15)

Using (5), one solves (15) as

𝑥𝑖 (𝑡) = 𝑥𝑖 (0) 𝐸𝑞,1 (𝑐𝑖𝑡𝑞) + 𝑛∑
𝑗=1

𝑎𝑖𝑗
⋅ ∫𝑡
0
(𝑡 − 𝜏)𝑞−1 𝐸𝑞,𝑞 (𝑐𝑖 (𝑡 − 𝜏)𝑞) 𝑓𝑗 (𝑥𝑗 (𝜏)) 𝑑𝜏.

(16)

Thus, according to (13), one has

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝑥𝑖 (0)󵄨󵄨󵄨󵄨 𝐸𝑞,1 (𝑐𝑖𝑡𝑞)

+ 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑚𝑗 ∫
𝑡

0
(𝑡 − 𝜏)𝑞−1 𝐸𝑞,𝑞 (𝑐𝑖 (𝑡 − 𝜏)𝑞) 𝑑𝜏.

(17)

Noting that the Laplace transform of a Mittag-Leffler
function is

∫𝑡
0
𝜏𝛽−1𝐸𝛽

1
,𝛽
2

(−𝑘𝜏𝛽1) 𝑑𝜏 = 𝑡𝛽2𝐸𝛽
1
,𝛽
2
+1 (−𝑘𝑡𝛽1) , (18)
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then one has
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑥𝑖 (0)󵄨󵄨󵄨󵄨 𝐸𝑞,1 (𝑐𝑖𝑡𝑞) + 𝐴 𝑖𝑡𝑞𝐸𝑞,𝑞+1 (𝑐𝑖𝑡𝑞) , (19)

where 𝐴 𝑖 = ∑𝑛𝑗=1 |𝑎𝑖𝑗|𝑚𝑗 is a positive constant.
It follows from Lemma 3 that

𝐴 𝑖𝑡𝑞𝐸𝑞,𝑞+1 (−𝑐𝑖𝑡𝑞) ≤ 𝐴 𝑖−𝑐𝑖 . (20)

Consequently, for large enough time 𝑡, one has
lim
𝑡→∞

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑀, (21)

where 𝑀 = max1≤𝑖≤𝑛{𝐴 𝑖/𝑐𝑖}. This ends the proof of Theo-
rem 4.

It should be pointed out that Theorem 4 can only drive𝑥𝑖(𝑡) to a small region of zero. To discuss the asymptotic
stability, one needs the following assumptions.

Assumption 5. The equilibrium point of system (11) is the
origin.

Assumption 6. 𝑓(𝑥(𝑡)) is a Lipshitz continuous function; that
is, the following inequality holds:

󵄩󵄩󵄩󵄩𝑓 (𝑥 (𝑡)) − 𝑓 (𝑦 (𝑡))󵄩󵄩󵄩󵄩 ≤ 𝑙 󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)󵄩󵄩󵄩󵄩 , (22)

where 𝑙 > 0 is a Lipshitz constant.
Remark 7. It should be mentioned that Assumptions 5 and 6
are reasonable. In fact, every equilibrium point of system (11)
can be moved to the origin by some linear transformations.
In many FOCSs, the nonlinear functions are smooth and
Lipshitz continuous, for example, fractional-order Lorenz
system, fractional-order Chen system, fractional-order Lü
system, fractional-order financial system, and fractional
Volta system [45].

Theorem 8. Consider system (12). Under Assumption 6, if(𝑙𝑏/𝑐)‖𝐴‖ < 𝑞, where 𝑐 = max1≤𝑖≤𝑛 − 𝑐𝑖, then the asymptotical
stability of system (12) can be guaranteed.

Proof. Suppose that 𝑥(𝑡), 𝑦(𝑡) ∈ 𝑅𝑛 are two arbitrary
solutions of (12). Denote 𝑒(𝑡) = 𝑥(𝑡) − 𝑦(𝑡); then, one has

D
𝑞𝑒 (𝑡) = 𝐶𝑒 (𝑡) + 𝐴 (𝑓 (𝑥 (𝑡)) − 𝑓 (𝑦 (𝑡))) . (23)

It follows from (23) that

𝑠𝑞𝐸 (𝑠) = 𝑠𝑞−1𝑒 (0) + 𝐶𝐸 (𝑠)
+ 𝐴L {𝑓 (𝑥 (𝑡)) − 𝑓 (𝑦 (𝑡))} , (24)

where 𝐸(𝑠) = L{𝑒(𝑡)}.
After some straightforward manipulators, one has

𝐸 (𝑠) = (𝐼𝑠𝑞 − 𝐶)−1
⋅ (𝑠𝑞−1𝑒 (0) + 𝐴L {𝑓 (𝑥 (𝑡)) − 𝑓 (𝑦 (𝑡))}) . (25)

Solving (25) yields

𝑒 (𝑡) = 𝐸𝑞,1 (𝐶𝑡𝑞) 𝑒 (0) + 𝐴∫𝑡
0
(𝑡 − 𝜏)𝑞−1

⋅ 𝐸𝑞,𝑞 (𝐶 (𝑡 − 𝜏)𝑞)L {𝑓 (𝑥 (𝑡)) − 𝑓 (𝑦 (𝑡))} 𝑑𝜏.
(26)

According to Assumption 6 and Lemma 1, one can find a
constant 𝑏 > 0 such that

‖𝑒 (𝑡)‖ ≤ 𝑏 ‖𝑒 (0)‖1 + ‖𝐶‖ 𝑡𝑞
+ 𝑙𝑏 ‖𝐴‖∫𝑡

0

(𝑡 − 𝜏)𝑞−11 + ‖𝐶‖ (𝑡 − 𝜏)𝑞 ‖𝑒 (𝜏)‖ 𝑑𝜏.
(27)

Using Lemma 2, one has

‖𝑥 (𝑡)‖ ≤ 𝑏 ‖𝑒 (0)‖1 + ‖𝐶‖ 𝑡𝑞 + ∫𝑡
0

𝑙𝑏 ‖𝐴‖ (𝑡 − 𝜏)𝛼−1 ‖𝑒 (0)‖(1 + ‖𝐶‖ (𝑡 − 𝜏)𝑞) (1 + ‖𝐶‖ 𝜏𝑞) exp(∫
𝑡

𝜏

𝑙𝑏 ‖𝐴‖ (𝑡 − 𝑢)𝑞−11 + ‖𝐶‖ (𝑡 − 𝑢)𝑞 𝑑𝑢)𝑑𝜏
= 𝑏 ‖𝑒 (0)‖1 + ‖𝐶‖ 𝑡𝑞 + ∫𝑡

0

𝑏𝑙 ‖𝐴‖ (𝑡 − 𝜏)𝑞−1 ‖𝑒 (0)‖
(1 + ‖𝐶‖ 𝜏𝑞) (1 + ‖𝐶‖ (𝑡 − 𝜏)𝑞)1−𝑏/𝑞‖𝐶‖ 𝑑𝜏

≤ 𝑏 ‖𝑒 (0)‖1 + ‖𝐶‖ 𝑡𝑞 + 𝑙𝑏 ‖𝐴‖ ‖𝑒 (0)‖ ‖𝐶‖𝑙𝑏‖𝐴‖/𝑞‖𝐶‖−2 ∫𝑡
0
(𝑡 − 𝜏)𝑙𝑏‖𝐴‖/‖𝐶‖−1 𝜏−𝑞𝑑𝜏

= 𝑏 ‖𝑒 (0)‖1 + ‖𝐶‖ 𝑡𝑞 + 𝑙𝑏 ‖𝐴‖ ‖𝑒 (0)‖ ‖𝐶‖𝑙𝑏‖𝐴‖/𝑞‖𝐶‖−2 Γ (𝑙𝑏 ‖𝐴‖ / ‖𝐶‖) Γ (1 − 𝑞)
Γ (1 + 𝑙𝑏 ‖𝐴‖ / ‖𝐶‖ − 𝑞) 𝑡𝑙𝑏‖𝐴‖/‖𝐶‖−𝑞.

(28)

Noting that (𝑙𝑏/𝑐)‖𝐴‖ < 𝑞, where 𝑐 = ‖𝐶‖ = max1≤𝑖≤𝑛 − 𝑐𝑖,
then according to (28) one has

lim
𝑡→∞

‖𝑒 (𝑡)‖ = 0, (29)

which completes the proof.

3.2. Synchronization Controller Design. Themaster and slave
FOCSs are defined, respectively, as

D
𝑞𝜁 (𝑡) = 𝑃𝜁 (𝑡) + 𝑄ℏ (𝜁 (𝑡)) , (30)

D
𝑞𝜁 (𝑡) = 𝑃𝜁 (𝑡) + 𝑄ℏ (𝜁 (𝑡)) + 𝐺𝑢 (𝑡) , (31)
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where 𝜁(𝑡), 𝜁(𝑡) ∈ R𝑛 are the state vectors of the master
FOCS and slave FOCS, respectively, 𝑃,𝑄, 𝐺 ∈ R𝑛×𝑛 are three
constant matrices,𝐺 is a positive definite control gainmatrix,
and 𝑢(𝑡) ∈ R𝑛 represents the control input.

Define the synchronization error 𝜀(𝑡) = 𝜁(𝑡) − 𝜁(𝑡). The
objective of this section is to design a proper control input𝑢(𝑡) such that 𝜀(𝑡) converges to zero eventually. To proceed,
let us give the following assumption first.

Assumption 9. ℏ is a Lipshitz continuous function; that is, the
following inequality holds:󵄩󵄩󵄩󵄩󵄩ℏ (𝜁 (𝑡)) − ℏ (𝜁 (𝑡))󵄩󵄩󵄩󵄩󵄩 ≤ 𝑎0 󵄩󵄩󵄩󵄩󵄩𝜁 (𝑡) − 𝜁 (𝑡)󵄩󵄩󵄩󵄩󵄩 , (32)

where 𝑎0 > 0 is a constant.
To meet the synchronization object, let us construct the

following fractional-order sliding mode surface:

𝑠 (𝑡) = Λ𝜀 (𝑡)
− 1Γ (𝑞)Λ (𝑃 + 𝐾)∫𝑡

0
(𝑡 − 𝜏)(𝑞−1) 𝜀 (𝜏) 𝑑𝜏, (33)

where Λ,𝐾 ∈ R𝑛×𝑛 are two design matrices. Then, it follows
from (30), (31), and (33) that

D
𝑞𝑠 (𝑡) = Λ𝑃𝜀 (𝑡) + Λ𝑄 (ℏ (𝜁 (𝑡)) − ℏ (𝜁 (𝑡))) − 𝐺𝑢 (𝑡)

− Λ (𝑃 + 𝐾) 𝜀 (𝑡)
= Λ𝑄 (ℏ (𝜁 (𝑡)) − ℏ (𝜁 (𝑡))) − 𝐺𝑢 (𝑡)

− Λ𝐾𝜀 (𝑡) .
(34)

Consequently, let D𝑞𝑠(𝑡) = 0; the control input can be given
as

𝑢 (𝑡) = 𝐺−1Λ𝑄(ℏ (𝜁 (𝑡)) − ℏ (𝜁 (𝑡))) − 𝐺−1Λ𝐾𝜀 (𝑡) . (35)

Now, we can give the following results.

Theorem 10. Consider the master FOCS (30) and the slave
FOCS (31) underAssumption 9. Suppose that the sliding surface
is given by (33) and the control input is designed as (35). If the
design matrices satisfy 𝑃 − Λ𝐾 < 0 and 𝑎0‖𝑄 − Λ𝑄‖ ≤ 𝜆𝑞,
where 𝜆 is the smallest eigenvalue of Λ𝐾 − 𝑃, then one can
conclude that the synchronization error converges to the origin
asymptotically.

Proof. It follows from (30) and (31) that

D
𝑞𝜀 (𝑡) = 𝑃𝜀 (𝑡) + 𝑄ℏ (ℏ (𝜁 (𝑡)) − ℏ (𝜁 (𝑡))) − 𝐺𝑢 (𝑡) . (36)

Substituting (35) into (36) yields

D
𝑞𝜀 (𝑡) = (𝑃 − Λ𝐾) 𝜀 (𝑡)

+ (𝑄 − Λ𝑄) ℏ (ℏ (𝜁 (𝑡)) − ℏ (𝜁 (𝑡))) . (37)

Noting that 𝑃 − Λ𝐾 < 0 and 𝑎0‖𝑄 − Λ𝑄‖ ≤ 𝜆𝑞, it follows
from (37), Assumption 9, andTheorem8 that lim𝑡→∞𝜀(𝑡) = 0.
This completes the proof of Theorem 10.
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Figure 1: Phase attractor of FOCS (38).

4. Simulation Results

In this section, two examples will be given to show the
effectiveness of the proposed method.

4.1. Synchronizing Two 2D Fractional-Order Duffing Systems.
The fractional-order Duffing system is described by [46]

D
𝑞𝜁1 (𝑡) = 𝜁2 (𝑡) ,

D
𝑞𝜁2 (𝑡) = 𝜁1 (𝑡) − 𝜁31 (𝑡) − 0.15𝜁2 (𝑡) + 0.3 cos (𝑡) . (38)

The Jacobian matrix of system (38) for the equilibrium
point 𝐸∗1 = (𝜁∗1 , 𝜁∗2 ) is

𝐽𝐸∗ = [ 0 1
1 − 3𝜁∗1 −0.15] . (39)

It is easy to know that system (38) has three equilibria:𝐸1 = (1.0729, 0), 𝐸2 = (−0.9062, 0), and 𝐸3 = (−0.1667, 0).
For equilibrium 𝐸1, we get the eigenvalues 𝜆1 ≈ −0.0750 +1.4876𝑖 and 𝜆2 ≈ −0.0750 − 1.4876𝑖. For equilibrium 𝐸2,
the eigenvalues are 𝜆1 ≈ 1.8548 and 𝜆2 ≈ −2.0048. For
equilibrium 𝐸3, we obtain the eigenvalues 𝜆1 ≈ 1.1521
and 𝜆2 ≈ −1.3021. According to these eigenvalues, we can
conclude that a minimal commensurate order to obtain the
chaotic behavior of system (38) is [45]

𝑞 > 2𝜋 arctan(1.48760.0750) = 0.9679. (40)

Under the initial conditions 𝜁1(0) = 2 and 𝜁2(0) = −1
and the fractional order 𝑞 = 0.98, FOCS (38) shows a chaotic
behavior, which is depicted in Figure 1.

According to (30) and (38), it is easy to know that

𝑃 = [0 1
1 0] ,

𝑄 = [0 0
0 1] ,

ℏ (𝑡) = [ 0
−𝜁31 (𝑡) − 0.15𝜁2 (𝑡) + 0.3 cos (𝑡)] .

(41)
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Figure 2: Synchronization between 𝜁1(𝑡) and 𝜁1(𝑡).
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Figure 3: Synchronization between 𝜁2(𝑡) and 𝜁2(𝑡).

Since system (38) is a chaotic system, then we know that both
signals 𝜁1(𝑡) and 𝜁2(𝑡) are bounded (from Figure 1, one knows
that |𝜁1(𝑡)| < 2 and |𝜁2(𝑡)| < 2). Thus, Assumption 9 is
satisfied with 𝑎0 = 3.

In the simulation, the initial condition for the slave FOCS
is 𝜁1(0) = −2 and 𝜁2(0) = 4. Suppose that 𝐺 = diag(1, 1). The
design matrices are chosen as

𝐾 = [−73 34
52 −12] ,

Λ = [0.1 0.2
0.2 0.3] .

(42)

Thus, we have that ‖𝑄 − Λ𝑄‖ = 0.728, 𝜆 = 3.1, and the two
conditions 𝑃 − Λ𝐾 < 0 and 𝑎0‖𝑄 − Λ𝑄‖ ≤ 𝜆𝑞 in Theorem 10
are satisfied.

The simulation results are presented in Figures 2–5. The
results where the state variables of the slave FOCS track
the master system’s states are presented in Figures 2 and 3.
The time response of the synchronization errors is depicted
in Figure 4. From these pictures, we can see that the syn-
chronization controller works well, and the synchronization
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Figure 4: Time response of synchronization errors 𝑒1(𝑡) and 𝑒2(𝑡).
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Figure 5: Time response of control inputs 𝑢1(𝑡) and 𝑢2(𝑡).

errors converge to the origin fast. From (35), we know that
the synchronization control input is a continuous function.
The smoothness of the control input is given in Figure 5,
fromwhich we can see that the proposed controller has small
fluctuation.

4.2. Synchronizing Two 3D Fractional-Order Chaotic Neural
Networks. Let us consider the following fractional-order
chaotic neural networks expressed by [15]

D
𝑞𝜁1 (𝑡) = −𝜁1 (𝑡) + 2 tanh (𝜁1 (𝑡)) − 1.2 tanh (𝜁2 (𝑡)) ,

D
𝑞𝜁2 (𝑡) = −𝜁2 (𝑡) + 2 tanh (𝜁1 (𝑡)) + 1.71 tanh (𝜁2 (𝑡))

+ 1.15 tanh (𝜁3 (𝑡)) ,
D
𝑞𝜁3 (𝑡) = −𝜁3 (𝑡) − 4.75 tanh (𝜁1 (𝑡))

+ 1.10 tanh (𝜁3 (𝑡)) .

(43)

Suppose that 𝑞 = 0.95 and the initial condition is 𝜁1(0) =−0.3, 𝜁2(0) = 0.4, and 𝜁3(0) = 0.3. The dynamical behavior
of FOCS (43) is given in Figure 6.
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Figure 6: Dynamical behavior of system (43) in (a) 3D space, (b) 𝜁1(𝑡) − 𝜁2(𝑡) plane, (c) 𝜁1(𝑡) − 𝜁3(𝑡) plane, and (d) 𝜁2(𝑡) − 𝜁3(𝑡) plane.

It is easy to know in the master chaotic
system (43) that 𝑃 = diag(−1, −1, −1), ℏ(𝑡) =[tanh(𝜁1(𝑡)), tanh(𝜁2(𝑡)), tanh(𝜁3(𝑡))]𝑇,

𝑄 = [[
[

2.00 −1.20 0.00
2.00 1.71 1.15
−4.75 0.00 1.10

]]
]
. (44)

Thus, we have ‖𝑄‖ = 1.235 and ℏ(𝑡) satisfy the Lipshitz
condition. The Lipshitz constant 𝑎0 can be chosen as 1.

The initial condition of the slave FOCS is 𝜁1(0) =3.2, 𝜁2(0) = −4, and 𝜁3(0) = −3.5. Let 𝐺 = diag(1, 1, 1). The
design matrices are chosen as

𝐾 = [[
[

1.2484 −0.1401 0.0127
0.0127 1.1210 −1.1019
−0.1146 −0.0892 0.9172

]]
]
,

Λ = [[
[
0.8 0.1 0
0 0.9 0.1
0.1 0.1 1.1

]]
]
.

(45)

Thus, we know that ‖𝑄 − Λ𝑄‖ = 0.7115, 𝜆 = 2, and the two
conditions 𝑃 − Λ𝐾 < 0 and 𝑎0‖𝑄 − Λ𝑄‖ ≤ 𝜆𝑞 in Theorem 10
are satisfied.

The simulation results are given in Figures 7 and 8.
Just like the results in Figures 2–5, we know that good
synchronization performance has been obtained.

5. Conclusion

In this paper, two stability criteria for fractional-order
nonlinear systems are given. Based on these theorems, the
synchronization of two identical FOCSs is addressed. A
fractional-order sliding surface, which contains a fractional-
order integral of the synchronization errors, is given. The
proposed controller can guarantee the asymptotical stability
of the closed-loop systems. However, in the controller design,
we need to know the exact value of the Lipchitz constant.
How to reduce this condition is one of our future research
directions.
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Figure 7: Simulation results in (a) synchronization between 𝜁1(𝑡) and 𝜁1(𝑡), (b) synchronization between 𝜁2(𝑡) and 𝜁2(𝑡), (c) synchronization
between 𝜁3(𝑡) and 𝜁3(𝑡), and (d) synchronization errors 𝑒1(𝑡), 𝑒2(𝑡), and 𝑒3(𝑡).
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