82 research outputs found

    Phylogenetic structure and formation mechanism of shrub communities in arid and semiarid areas of the Mongolian Plateau

    Get PDF
    The mechanisms of species coexistence within a community have always been the focus in ecological research. Community phylogenetic structure reflects the relationship of historical processes, regional environments, and interactions between species, and studying it is imperative to understand the formation and maintenance mechanisms of community composition and biodiversity. We studied the phylogenetic structure of the shrub communities in arid and semiarid areas of the Mongolian Plateau. First, the phylogenetic signals of four plant traits (height, canopy, leaf length, and leaf width) of shrubs and subshrubs were measured to determine the phylogenetic conservation of these traits. Then, the net relatedness index (NRI) of shrub communities was calculated to characterize their phylogenetic structure. Finally, the relationship between the NRI and current climate and paleoclimate (since the Last Glacial Maximum, LGM) factors was analyzed to understand the formation and maintenance mechanisms of these plant communities. We found that desert shrub communities showed a trend toward phylogenetic overdispersion; that is, limiting similarity was predominant in arid and semiarid areas of the Mongolian Plateau despite the phylogenetic structure and formation mechanisms differing across habitats. The typical desert and sandy shrub communities showed a significant phylogenetic overdispersion, while the steppified desert shrub communities showed a weak phylogenetic clustering. It was found that mean winter temperature (i.e., in the driest quarter) was the major factor limiting steppified desert shrub phylogeny distribution. Both cold and drought (despite having opposite consequences) differentiated the typical desert to steppified desert shrub communities. The increase in temperature since the LGM is conducive to the invasion of shrub plants into steppe grassland, and this process may be intensified by global warming

    Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human adipose-derived mesenchymal stem cells (ADMSCs) may be ideal source of cells for intervertebral disc (IVD) regeneration, but the harsh chemical microenvironment of IVD may significantly influence the biological and metabolic vitality of ADMSCs and impair their repair potential. This study aimed to investigate the viability, proliferation and the expression of main matrix proteins of ADMSCs in the chemical microenvironment of IVD under normal and degeneration conditions.</p> <p>Methods</p> <p>ADMSCs were harvested from young (aged 8-12 years, n = 6) and mature (aged 33-42 years, n = 6) male donors and cultured under standard condition and IVD-like conditions (low glucose, acidity, high osmolarity, and combined conditions) for 2 weeks. Cell viability was measured by annexin V-FITC and PI staining and cell proliferation was measured by MTT assay. The expression of aggrecan and collagen-I was detected by real-time quantitative polymerase chain reaction and Western blot analysis.</p> <p>Results</p> <p>IVD-like glucose condition slightly inhibited cell viability, but increased the expression of aggrecan. In contrast, IVD-like osmolarity, acidity and the combined conditions inhibited cell viability and proliferation and the expression of aggrecan and collagen-I. ADMSCs from young and mature donors exhibited similar responses to the chemical microenvironments of IVD.</p> <p>Conclusion</p> <p>IVD-like low glucose is a positive factor but IVD-like high osmolarity and low pH are deleterious factors that affect the survival and biological behaviors of ADMSCs. These findings may promote the translational research of ADMSCs in IVD regeneration for the treatment of low back pain.</p

    Identification of rifampin-regulated functional modules and related microRNAs in human hepatocytes based on the protein interaction network

    Get PDF
    BACKGROUND: In combination with gene expression profiles, the protein interaction network (PIN) constructs a dynamic network that includes multiple functional modules. Previous studies have demonstrated that rifampin can influence drug metabolism by regulating drug-metabolizing enzymes, transporters, and microRNAs (miRNAs). Rifampin induces gene expression, at least in part, by activating the pregnane X receptor (PXR), which induces gene expression; however, the impact of rifampin on global gene regulation has not been examined under the molecular network frameworks. METHODS: In this study, we extracted rifampin-induced significant differentially expressed genes (SDG) based on the gene expression profile. By integrating the SDG and human protein interaction network (HPIN), we constructed the rifampin-regulated protein interaction network (RrPIN). Based on gene expression measurements, we extracted a subnetwork that showed enriched changes in molecular activity. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG), we identified the crucial rifampin-regulated biological pathways and associated genes. In addition, genes targeted by miRNAs that were significantly differentially expressed in the miRNA expression profile were extracted based on the miRNA-gene prediction tools. The miRNA-regulated PIN was further constructed using associated genes and miRNAs. For each miRNA, we further evaluated the potential impact by the gene interaction network using pathway analysis. RESULTS AND DISCCUSSION: We extracted the functional modules, which included 84 genes and 89 interactions, from the RrPIN, and identified 19 key rifampin-response genes that are associated with seven function pathways that include drug response and metabolism, and cancer pathways; many of the pathways were supported by previous studies. In addition, we identified that a set of 6 genes (CAV1, CREBBP, SMAD3, TRAF2, KBKG, and THBS1) functioning as gene hubs in the subnetworks that are regulated by rifampin. It is also suggested that 12 differentially expressed miRNAs were associated with 6 biological pathways. CONCLUSIONS: Our results suggest that rifampin contributes to changes in the expression of genes by regulating key molecules in the protein interaction networks. This study offers valuable insights into rifampin-induced biological mechanisms at the level of miRNAs, genes and proteins

    Injectable kartogenin and apocynin loaded micelle enhances the alleviation of intervertebral disc degeneration by adipose-derived stem cell.

    Get PDF
    Cell transplantation has been proved the promising therapeutic effects on intervertebral disc degeneration (IVDD). However, the increased levels of reactive oxygen species (ROS) in the degenerated region will impede the efficiency of human adipose-derived stem cells (human ADSCs) transplantation therapy. It inhibits human ADSCs proliferation, and increases human ADSCs apoptosis. Herein, we firstly devised a novel amphiphilic copolymer PEG-PAPO, which could self-assemble into a nanosized micelle and load lipophilic kartogenin (KGN), as a single complex (PAKM). It was an injectable esterase-responsive micelle, and showed controlled release ability of KGN and apocynin (APO). Oxidative stimulation promoted the esterase activity in human ADSCs, which accelerate degradation of esterase-responsive micelle. Compared its monomer, the PAKM micelle possessed better bioactivities, which were attributed to their synergistic effect. It enhanced the viability, autophagic activation (P62, LC3 II), ECM-related transcription factor (SOX9), and ECM (Collagen II, Aggrecan) maintenance in human ADSCs. Furthermore, it is demonstrated that the injection of PAKM with human ADSCs yielded higher disc height and water content in rats. Therefore, PAKM micelles perform promoting cell survival and differentiation effects, and may be a potential therapeutic agent for IVDD

    Application of computer simulation in the study of infectious disease transmission mechanism

    No full text
    Major infectious diseases have exerted a serious influence on people's lives. Through quantifying the effect of prevention and control, we can deeply understand the transmission mechanism of infectious diseases. This paper estimates the intensity of detection, the degree of isolation and other indicators, and analyzes the influence mechanism of these indicators on the scale of the epidemic, using computer programming to simulate the extended dynamics model of infectious diseases, based on the infectious disease in Hubei. The mortality rate and recovery rate, according to the data of Hubei, in the model are set as time variables, and the threshold is set at the same time. As a result, the improved analysis mechanism of the model will get more realistic simulation prediction results. It is concluded that isolation measures can effectively control the scale of the epidemic, but there is a phenomenon of marginal utility degression with excessively strict isolation measures by analysing and comparing. The increasing detection efforts will reduce the epidemic duration of the later stage, accelerating the arrival of the epidemic peak, although the peak will be slightly larger. All in all, we can comprehensively consider the testing cost and maintain a moderate detection intensity

    Impact of control technology on fight against COVID-19

    No full text
    Since the outbreak of COVID-19, all countries have taken certain measures to restrain the spread of COVID-19. It is a complex and practical issue to study the measures and effects of the epidemic prevention and control. The spread of the epidemic in different countries has certain characteristics, and the prevention and control models and effects in different countries are also different. In this paper, the key factors affecting the prevention effect of COVID-19 were analyzed by integrating multiple data and using interdisciplinary methods of mathematics, statistics and information management science on the basis of public management, and the system model of influencing factors of COVID-19 was constructed

    GFF3sort: a novel tool to sort GFF3 files for tabix indexing

    No full text
    Abstract Background The traditional method of visualizing gene annotation data in JBrowse is converting GFF3 files to JSON format, which is time-consuming. The latest version of JBrowse supports rendering sorted GFF3 files indexed by tabix, a novel strategy that is more convenient than the original conversion process. However, current tools available for GFF3 file sorting have some limitations and their sorting results would lead to erroneous rendering in JBrowse. Results We developed GFF3sort, a script to sort GFF3 files for tabix indexing. Specifically designed for JBrowse rendering, GFF3sort can properly deal with the order of features that have the same chromosome and start position, either by remembering their original orders or by conducting parent-child topology sorting. Based on our test datasets from seven species, GFF3sort produced accurate sorting results with acceptable efficiency compared with currently available tools. Conclusions GFF3sort is a novel tool to sort GFF3 files for tabix indexing. We anticipate that GFF3sort will be useful to help with genome annotation data processing and visualization

    BMP3 Alone and Together with TGF-Ī² Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype

    No full text
    Human mesenchymal stem cells (MSCs) have the potential to differentiate into nucleus pulposus (NP)-like cells under specific stimulatory conditions. Thus far, the effects of bone morphogenetic protein 3 (BMP3) and the cocktail effects of BMP3 and transforming growth factor (TGF)-Ī² on MSC proliferation and differentiation remain obscure. Therefore, this study was designed to clarify these unknowns. MSCs were cultured with various gradients of BMP3 and BMP3/TGF-Ī², and compared with cultures in basal and TGF-Ī² media. Cell proliferation, glycosaminoglycan (GAG) content, gene expression, and signaling proteins were measured to assess the effects of BMP3 and BMP3/TGF-Ī² on MSCs. Cell number and GAG content increased upon the addition of BMP3 in a dose-dependent manner. The expression of COL2A1, ACAN, SOX9, and KRT19 increased following induction with BMP3 and TGF-Ī², in contrast to that of COL1A1, ALP, OPN, and COMP. Smad3 phosphorylation was upregulated by BMP3 and TGF-Ī², but BMP3 did not affect the phosphorylation of extracellular-signal regulated kinase (ERK) 1/2 or c-Jun N-terminal kinase (JNK). Our results reveal that BMP3 enhances MSC proliferation and differentiation into NP-like cells, as indicated by increased cell numbers and specific gene expressions, and may also cooperate with TGF-Ī² induced positive effects. These actions are likely related to the activation of TGF-Ī² signaling pathway

    Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma

    No full text
    Abstract Background Chimeric antigen receptor (CAR)-engineered T cells have displayed outstanding performance in the treatment of patients with hematological malignancies. However, their efficacy against solid tumors has been largely limited. Methods In this study, human osteosarcoma cell lines were prepared, flow cytometry using antibodies against CD166 was performed on different cell samples. CD166-specific T cells were obtained by viral gene transfer of corresponding DNA plasmids and selectively expanded using IL-2 and IL-15. The ability of CD166.BBĪ¶ CAR-T cells to kill CD166+ osteosarcoma cells was evaluated in vitro and in vivo. Results CD166 was selectively expressed on four different human osteosarcoma cell lines, indicating its role as the novel target for CAR-T cell therapy. CD166.BBĪ¶ CAR-T cells killed osteosarcoma cell lines in vitro; the cytotoxicity correlated with the level of CD166 expression on the tumor cells. Intravenous injection of CD166.BBĪ¶ CAR-T cells into mice resulted in the regression of the tumor with no obvious toxicity. Conclusions Together, the data suggest that CD166.BBĪ¶ CAR-T cells may serve as a new therapeutic strategy in the future clinical practice for the treatment of osteosarcoma
    • ā€¦
    corecore