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Abstract

Background: In combination with gene expression profiles, the protein interaction network (PIN) constructs a
dynamic network that includes multiple functional modules. Previous studies have demonstrated that rifampin
can influence drug metabolism by regulating drug-metabolizing enzymes, transporters, and microRNAs (miRNAs).
Rifampin induces gene expression, at least in part, by activating the pregnane X receptor (PXR), which induces
gene expression; however, the impact of rifampin on global gene regulation has not been examined under the
molecular network frameworks.

Methods: In this study, we extracted rifampin-induced significant differentially expressed genes (SDG) based on the
gene expression profile. By integrating the SDG and human protein interaction network (HPIN), we constructed the
rifampin-regulated protein interaction network (RrPIN). Based on gene expression measurements, we extracted a
subnetwork that showed enriched changes in molecular activity. Using the Kyoto Encyclopedia of Genes and Genomes
(KEGG), we identified the crucial rifampin-regulated biological pathways and associated genes. In addition, genes
targeted by miRNAs that were significantly differentially expressed in the miRNA expression profile were extracted
based on the miRNA-gene prediction tools. The miRNA-regulated PIN was further constructed using associated genes
and miRNAs. For each miRNA, we further evaluated the potential impact by the gene interaction network using
pathway analysis.

Results and Disccussion: We extracted the functional modules, which included 84 genes and 89 interactions, from
the RrPIN, and identified 19 key rifampin-response genes that are associated with seven function pathways that include
drug response and metabolism, and cancer pathways; many of the pathways were supported by previous studies. In
addition, we identified that a set of 6 genes (CAV1, CREBBP, SMAD3, TRAF2, KBKG, and THBS1) functioning as gene hubs
in the subnetworks that are regulated by rifampin. It is also suggested that 12 differentially expressed miRNAs were
associated with 6 biological pathways.
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Conclusions: Our results suggest that rifampin contributes to changes in the expression of genes by regulating key
molecules in the protein interaction networks. This study offers valuable insights into rifampin-induced biological
mechanisms at the level of miRNAs, genes and proteins.

Background
Protein-protein interactions are intrinsic to most bio-
logical processes [1]. Expanded knowledge of the protein
interaction network (PIN) may shed light on basic cellular
mechanisms. An expression profile is a dynamic collection
of data used to deduce a gene’s function, state, environ-
ment, etc. With the increasing availability of genome and
proteome data, the PIN can be integrated with gene ex-
pression profiles to create conditional network modules
within a specific biological state. This method has
been used to explore cellular mechanisms associated
with multiple diseases [2], including cancer. For instance,
Zhang et al. [3] analysed the genes and crucial modules
associated with coronary artery diseases (CAD), and sug-
gested that two proteins were critical for the development
of CAD. Lin et al. [2] studied dynamic functional modules
and co-expressed protein interaction networks in cases
of dilated cardiomyopathy. Previous studies suggest that
the integrated analysis of PIN and gene expression pro-
file information may contribute to the identification of
the functional modules and key genes that are relevant
to important biological pathways.
Rifampin is a drug that is usually used to treat tu-

berculosis and inactive meningitis [4]. The molecular
mechanisms and functions of rifampin-regulation have
previously been identified. Our previous study has con-
firmed that rifampin altered expression level of miRNAs
and many cytochrome P450 enzymes (CYPs), which are
the major metabolic enzymes that control the metabolism
of most clinically important drugs, and some of the
changes exist in associated relationships that suggest
that some of CYP mRNAs are targeted by some miR-
NAs [5–8]. Rifampin is also a typical ligand of the preg-
nane X receptor (PXR), which is a transcription factor
and a key regulator of the CYPs and other genes in-
volved in drug disposition [9, 10]. Furthermore, rifam-
pin can rapidly downregulate hepatic angiogenesis- and
mitogenesis-related genes. Therefore, it shows favorable
antiproliferative effects on endothelial cell, which is
make it potentially beneficial for targeting hepatobiliary
cancer cells [11, 12].
Previous studies have demonstrated that the drug-

metabolizing enzymes [6], transporters, and microRNAs
(miRNAs) are regulated by rifampin [11, 12], and the
mechanisms of the regulation of some of these genes
are well-studied; however, little has been done to put
the global gene expression effects of rifampin into

biological pathways and interactive networks. Protein
interaction network can depict and integrate information
pertaining to domain architecture, post-translational
modification, interaction networks and disease association
for each protein in the human proteome [13]. Further-
more, by combining with mRNA expression profiles,
they can be used to identify specific correlations of
between the genes, and to identify the key genes and
functional modules associated with critical biological
pathways. In addition, the integration of the miRNA
expression profiles can depict relationship between
the altered expression of miRNAs and their targeted-
mRNA. The implementation of an integrative method that
incorporates protein interaction networks and gene
expression profiles to reveal conditional network modules
associated with the rifampin-regulated biological pro-
cesses becomes increasingly important in clarifying the
regulatory mechanisms responsible for the rifampin
effects on gene expression.
In this study, we focused on identifying the key genes,

miRNAs, and the regulatory relationships among them.
We also explored the rifampin-induced biological path-
ways by integrating the protein interaction networks and
the miRNA and mRNA expression profiles. In this study,
we propose a method which can be used to identify the
rifampin-regulated functional modules in the protein
interaction network of human hepatocytes, and can also
be used to further analyze the rifampin-induced miRNAs
and their functions. A schematic of the overall method is
illustrated in Fig. 1. In this model, the gene expression
profile and PIN are integrated to construct the rifampin-
regulated protein interaction network (RrPIN). Then, in
order to analyse the crucial biological pathways, we iden-
tify the functional modules that participate in a common
biological function within the protein-protein interaction
network. Next, the functional modules are extracted using
BioNet and jActiveModules, and the rifampin-induced
significant differentially expressed key genes are identified
based on an analysis of Gene Ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG). Fi-
nally, the miRNA-regulated PINs are established using
these key genes and gene-targeted miRNAs based on the
miRNA expression profile and miRNA-target prediction
databases, and the functions of the miRNAs are revealed
based on GO and KEGG. The proposed analysis enables
us to uncover rifampin-induced biological mechanisms in
human hepatocytes.
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Methods
Data
The gene expression dataset and miRNA expression
dataset were performed as our previous study in Rama-
moorthy et al. [8]. In the current study, the miRNA and
mRNA expression profiles were obtained from primary
human hepatocyte cultures (obtained from CellzDirect)
from 7 donors, each treated with rifampin or vehicle for
a total of 14 datasets. Cultures from each subject were
treated as biologic replicates (n = 7). The hepatocytes
were treated with rifampin or vehicle for 24 h and the
total RNAs were isolated using a miRNeasy kit. The
mRNA expression profile included 12,780 genes. The
miRNA expression profile, which included 334 miRNAs,

was measured using the Taqman OpenArray Human
miRNA Panel using a NT Cycler. The mRNAs expres-
sion was measured using a standard method including
EZBead preparation, Next-Gene sequencing, read quality
assessment, sequence alignment, and RNA-Seq differen-
tial expression analysis.

Construction of RrPIN
The PPI data was downloaded from the Human Protein
Reference Database (HPRD) [13], which contains experi-
mentally validated interactions within the human prote-
ome. The human liver protein interaction network (HLPN)
[14] contains proteome-scale protein interaction maps of
the human liver. It is comprised of 3484 interactions

Fig. 1 The hierarchical chart of identification of rifampin-regulated functional modules and related miRNAs
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among 2582 proteins and provides substantial new insights
into systems biology, disease research, and drug discovery.
To construct the human protein interaction network
(HPIN), all the proteins and non-overlapped interactions
in the HPLN and HPRD were merged as the nodes and in-
teractions of HPIN.
To construct the rifampin-regulated gene network, we

integrated the gene expression profile and HPIN as follows:
the SDGs which were included in the HPIN were used as
RrPIN’s nodes, and the interactions of RrPIN’s nodes in the
HPIN were used as the RrPIN’s interactions. Cytoscape ver-
sion 3.0.2 software (http://chianti.ucsd.edu/cytoscape-3.2.0/)
[15] was used to generate the network.

Identification of the functional modules
Particular interest of BioNet and jActiveModules were
the identification of functional modules in the network

in which the nodes have significant P-values by means of
detecting differentially expressed regions in networks.
This indicates a group of nodes which are densely con-
nected and have significant differences in expression level,
suggesting a module whose activity is influenced by the
experimental context of the expression data. The func-
tional modules tend to correspond to shared common
cellular function beyond the scope of classical pathways
[16–18]. The maximally scoring optimal module was
identified using BioNet [17, 18]. And the jActiveModules
plug-in of cytoscape was used to further identify multiple
significant modules in the PPI network [16].

Enrichment analysis of functional modules
The gene-annotation enrichment analysis was performed
using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID), which provides a

Fig. 2 The workflow of the RrPIN. Color is according to the fold change where red denotes upregulated and green denotes downregulated
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comprehensive set of functional annotation tools for
biological interpretation of large gene lists. GO and KEGG
are included in the set of functional annotation tools
of DAVID. To study the rifampin-regulated biological

process, we used DAVID’s GOTERM_BP_FAT (lower levels
of biological process ontology), and KEGG pathway
analysis to identify enriched biological themes, particu-
larly GO terms [19].

Fig. 3 The functional modules of RrPIN. a The maximally functional module of PPI network. Color is according to the fold change where red
denotes upregulated and green denotes downregulated. The shape of the nodes depicts the aggregate score: circles indicate a negative score,
rectangles denotes a positive score. b, c, d, e and f are the five functional modules of RrPIN. The regulatory relationships are denoted by colours
in which red indicates upregulated genes, and green indicates downregulated. As well, the depth of the colour explains the size of fold change
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Identification of miRNAs and analysis of their functions
MiRNAs with p < 0.05 were regarded as significant dif-
ferentially expressed miRNAs. We identified these miR-
NAs’ target genes using the R library RmiR.Hs.miRNA
[20] which collects information from different miRNA
target databases. In this study, Targetscan [21, 22], mi-
Randa [23], PicTar [24] and miRTarBase [25, 26] were
choosen. The BiomaRt [27] library, which provides a
wide range of online queries from gene annotation to
database mining, was used to convert gene IDs to gene
symbols based on the hsapiens_gene_ensembl database.
For each miRNA, the miRNA-targeted genes belonging to
functional modules were considered as the nodes of the
miRNA-regulated PIN. The interactions of these genes in
PPI and of each miRNA with its target genes were consid-
ered as the interactions of the miRNA-regulated PIN. As a

result, we obtained the miRNA-regulated PIN. For each
miRNA, we analysed its potential functions by analysing
the miRNA’s target genes based on GO and KEGG.

Results
SDGs and RrPIN
The mRNA expression profile was obtained from RNA-
seq data from primary hepatocytes from 7 subjects treated
with rifampin or vehicle. In order to focus on cellular re-
sponses that are triggered by the rifampin treatment, we
pre-selected the genes that are differentially expressed
with a loose p-value threshold at p-value < 0.01 without
multiple hypothesis correction. Our further analysis
focuses on 1866 differentially expressed genes that pass
the threshold. We mapped all the differentially expressed
genes on the combined human protein interaction network,

Table 1 Table of top 20 GO terms and top 10 KEGG terms for the genes of functional modules

Category Term Count Percent P-value Benjiamini

GOTERM_BP_FAT regulation of apoptosis 19 22.6 5.10E-07 7.30E-04

GOTERM_BP_FAT regulation of programme cell death 19 22.6 5.90E-07 4.20E-04

GOTERM_BP_FAT regulation of cell death 19 22.6 6.20E-07 3.00E-04

GOTERM_BP_FAT negative regulation of apoptosis 13 15.5 7.90E-07 2.80E-04

GOTERM_BP_FAT negative regulation of programmed cell death 13 15.5 9.10E-07 2.60E-04

GOTERM_BP_FAT negative regulation of cell death 13 15.5 9.40E-07 2.20E-04

GOTERM_BP_FAT membrane organization 13 15.5 1.70E-06 3.50E-04

GOTERM_BP_FAT vesicle-mediated transport 15 17.9 4.50E-06 8.10E-04

GOTERM_BP_FAT membrane invagination 10 11.9 4.70E-06 7.40E-04

GOTERM_BP_FAT endocytosis 10 11.9 4.70E-06 7.40E-04

GOTERM_BP_FAT response to hypoxia 8 9.5 1.20E-05 1.70E-03

GOTERM_BP_FAT response to oxygen levels 8 9.5 1.60E-05 2.10E-03

GOTERM_BP_FAT response to inorganic substance 9 10.7 2.30E-05 2.70E-03

GOTERM_BP_FAT anti-apoptosis 9 10.7 2.40E-05 2.60E-03

GOTERM_BP_FAT positive regulation of multicellular organismal process 9 10.7 7.90E-05 8.00E-03

GOTERM_BP_FAT drug metabolic process 4 4.8 9.80E-05 9.20E-03

GOTERM_BP_FAT response to metal ion 7 8.3 9.80E-05 8.70E-03

GOTERM_BP_FAT phagocytosis 5 6 1.60E-04 1.40E-02

GOTERM_BP_FAT response to organic substance 14 16.7 2.20E-04 1.80E-02

GOTERM_BP_FAT regulation of tube size 5 6 2.40E-04 1.80E-02

KEGG_PATHWAY Metabolism of xenobiotics by cytochrome P450 6 7.1 2.00E-04 1.70E-02

KEGG_PATHWAY Retinol metabolism 5 6 1.40E-03 6.00E-02

KEGG_PATHWAY Drug metabolism 5 6 2.40E-03 6.70E-02

KEGG_PATHWAY Linoleic acid metabolism 3 3.6 2.70E-02 4.50E-01

KEGG_PATHWAY Pathways in cancer 8 9.5 2.90E-02 4.00E-01

KEGG_PATHWAY Focal adhesion 6 7.1 3.70E-02 4.10E-01

KEGG_PATHWAY Porphyrin and chlorophyll metabolism 3 3.6 3.70E-02 3.70E-01

KEGG_PATHWAY Small cell lung cancer 4 4.8 4.20E-02 3.70E-01

KEGG_PATHWAY ECM-receptor interaction 4 4.8 4.20E-02 3.70E-01

KEGG_PATHWAY TGF-beta signaling pathway 4 4.8 4.60E-02 3.60E-01
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which consists of 10,210 proteins with 42,521 interactions.
As shown in Fig. 2, the resultant rifampin interaction
network includes 663 proteins with 1024 interactions.

Identification and analysis of the functional modules
The aforementioned network contains candidate differ-
entially expressed genes with a flexible p-value cutoff.
This is intentional since our network analysis will be fur-
ther used to identify a cluster of interacting molecules
that tend to be collectively differentially expressed, and
therefore will reduce false positives. We used BioNet
[17, 18], a bioconductor package for the functional ana-
lysis of biological networks, which uses the p-values ob-
tained from differential expressed genes from RNA-seq
data. The goal of this algorithm is to identify functional
modules, or significantly differentially expressed subnet-
works, within large networks [17]. This was achieved
by computing a score for each node, reflected by its
p-value, and used a network search algorithm to find
the highest-scoring subgraph.

In this study, the maximally functional module was iden-
tified by computing optimal scores based on the p-values
from the RNA-seq data to evaluate how molecular activity
changes were correlated with rifampin regulation. False
discovery rate (FDR) is an adjustment parameter for con-
trolling the resultant subnetwork size. Since FDR can be
used for fine-tuning of the signal noise decomposition, we
scan a large range of FDRs and evaluate the obtained mod-
ules according to true-positive rate and precision (ratio of
true positives to all positively classify). As a result, a thresh-
old value of >0.0001 was used, because others thresholds
lead to either too small or too large size of the module.
The derived module captures the characteristically differ-
ently expressed interactions associated with rifampin treat-
ment. There were 84 genes and 89 interactions in the
maximally functional module. P-values, fold-changes, and
false discovery rates (FDR) for the genes of the maximally
functional module are shown in Additional file 1.
To avoid bias and to ensure generality of our results,

besides the maximally functional module, we identified

Table 2 Enrichment analysis of the maximally functional module in rifampin

DAVID (Term) Genes P-value

GO: Response to drug ABCB1,UGT1A4,CAV1,CAV2 3.6E-2

KEGG: Metabolism of xenobiotics by cytochrome P450 UGT1A4,ADH6,CYP1A1,CYP2C19,CYP2C9,CYP2E1 2.0E-4

KEGG: Retinol metabolism UGT1A4,ADH6,CYP1A1,CYP2C19,CYP2C9 1.4E-3

KEGG: Drug metabolism UGT1A4,ADH6, CYP2C19,CYP2C9,CYP2E1 2.4E-3

KEGG: Linoleic acid metabolism CYP2C19,CYP2C9,CYP2E1 2.7E-2

KEGG: Pathways in cancer CEBPA,CREBBP,SMAD3,TRAF2,BIRC3,EGLN2,FN1,IKBKG 2.9E-2

Focal adhesion BIRC3,CAV1,CAV2,FN1,ITGA1,THBS1 3.7E-2

Fig. 4 The pathway relative abundance of maximally functional module’s genes and all SDGs on the associated seven functional enrichment terms
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the multiple functional modules and key genes that also
demonstrated the significant enrichment on differentially
expressed genes; this analysis was done using the jActi-
veModules plug-in in cytoscape [15]. The maximum
depth from the start node was set as 2 and the overlap
threshold was set as 0. There were 31 nodes and 36 in-
teractions within the five functional modules. P-values,
Fold Changes, and false discovery rates (FDR) for the
genes within the five functional modules are shown in
Additional file 2. The maximally functional module and
five functional modules are shown in Fig. 3.

As expected, the results from BioNet are essentially in
agreement with the results from the jActiveModules
plug-in. The maximally functional module included all the
nodes and interactions of the five functional modules.

Enrichment analysis of functional modules
To systematically determine the roles of genes in the func-
tional modules, the online biological classification tool
DAVID was used to carry out the functional classification
based on GO and key signal pathways from KEGG. Since
most of the genes within the five modules were included

Fig. 5 The RrPIN extension network of 19 genes and associated 7 functions
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in the maximally functional module, we primarily focused
on the analysis of the maximally functional module. Table
of top 20 GO terms and top 10 KEGG terms for the genes
of functional modules were shown in Table 1. Due to the
redundant nature of the ontology analysis, functional an-
notation clustering was also derived from DAVID. A table
of the top 20 functional annotations clustering for the
genes of functional modules assessed by DAVID are pro-
vided in Additional file 3. Since the evidence suggests that
rifampin have a broad spectrum of effect on enhancing
drug metabolism, specifically, we focused on the GO
terms “drug” and “metabolism,” and the top six listed
KEGG pathways were extracted and the duplicates were
eliminated. The p-value was used to evaluate the signifi-
cance of the GO terms and KEGG pathways. Table 2
shows the results of the enrichment analysis of the max-
imally functional module in the RrPIN.
The results show that the maximally functional module

is relevant with seven functional enrichment terms: re-
sponse to drug, metabolism of xenobiotics by cytochrome
P450, retinol metabolism, drug metabolism, linoleic acid
metabolism, cancer pathways, and focal adhesion. Among
these terms, retinol metabolism, drug metabolism and
linoleic acid metabolism contained many similarities in
genes, since these three function terms were functionally
correlated and clustered in functional annotation clustering
in DAVID. In particular, the function pathways coincided
with previously reported rifampin-induced biological
functions. For example, rifampin affected the hepatic
drug disposition and metabolism [28, 29] and it was a
potent inducer of drug-metabolizing enzymes [6, 29–31].
Rifampin is also an inhibitor which rapidly downregulates
angiogenesis and mitogenesis-related genes to target
cancer cells [12, 32, 33].
In addition, we define the percentage of identified SDGs

in each pathway relative to the total number of SDGs as
pathway relative abundance. Assume that there are N
SDGs-associated biological pathways, for i–th pathway, S(i)
is number of identified SDGs, and N(i) is enriched number
of the total SDGs. The pathway relative abundance E(x) is
defined as:

E ið Þ ¼ S ið Þ
N ið Þ i∈1 ::N ð1Þ

Figure 4 shows the pathway relative abundance of max-
imally functional module’s genes and all SDGs on the as-
sociated seven functional enrichment terms. It can be
seen that the SDGs of maximally functional module are
more enriched and representative on each terms than the
total SDGs. This suggests that our strategy in integrating
PPI network with the differential expression analysis
helped us in capturing more biologically relevant signals.

To analyze each functional enrichment term, we focus
on the analysis of their genes. There were 19 key genes as-
sociated with 7 functions that we extracted using DAVID.
Then we extend the protein interaction network of 19
genes based on the RrPIN with one level interaction. The
RrPIN extension network of 19 genes consists of 50 nodes
and 53 interactions. The RrPIN extension network of 19
genes and associated 7 functions are shown as Fig. 5.
It is worth noting that UGT1A4, ADH6, CYP1A1,

CYP2C19, CYP2C9 and CYP2E1 are all associated with
metabolism of xenobiotics, drug metabolism, retinol
metabolism, and linoleic acid metabolism. BIRC3, CAV1,
CAV2, FN1, ITGA1 and THBS1 were functionally enriched
to focal adhesion, which contributes to antiangiogenic and
anti-tumour effects. These results indicate that rifampin in-
duced drug metabolism, partially, by regulating UGT1A4,
ADH6, CYP1A1, CYP2C19, CYP2C9 and CYP2E1. These
results also signify that rifampin can influence the anti-
angiogenesis and anti-tumour effects of drugs by regulating
BIRC3, CAV1, CAV2, FN1, ITGA1 and THBS1. Previ-
ous reports support these findings, stating that UGT1A4
CYP1A1, CYP2C19, CYP2C9 and CYP2E1 are drug-
metabolizing enzymes [34, 35], and ADH6 modulates
the risk for drug dependence [35]. BIRC3 contains anti-
apoptotic genes, which can be suppressed to counteract
cancerous activity [36]. CAV1 and CAV2 were correlated
with tumour growth and metastasis [37–39], and FN1
was a potential biomarker for some cancers [40, 41],
while ITGA1 and THBS1 were also associated with cancer
risk [42, 43].
In addition, some of the 19 key genes were hub pro-

teins that interacted with multiple proteins. For example,
CAV1, CREBBP, SMAD3, TRAF2, KBKG and THBS1
had at least four interactions with other proteins. These
results suggest that these six genes are important compo-
nents in biological pathways regulated by rifampin.

Table 3 The significant differentially expressed miRNAs

miRNA P-value miRNA P-value

Upregulated Upregulated

miR-886-3p 0.0002 miR-660 0.0297

miR-766 0.0075 miR-638 0.0302

miR-92a 0.0169 miR-25 0.0338

miR-107 0.0177 miR-616 0.0446

miR-30d# 0.0195 miR-576-3p 0.0453

miR-335 0.0241 miR-218 0.0499

Downregulated Downregulated

miR-186 0.0018 miR-320 0.0376

miR-361 0.0111 miR-202 0.0396

miR-95 0.0219 miR-200b# 0.0426

miR-345 0.0239 let-7 g 0.0435
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Joint analysis of key genes and associated miRNAs
To identify miRNAs that may regulate these key genes
within the functional modules, we correlated the alterations
in the miRNA and gene expression. In this process, we
extracted the significant differentially expressed miRNAs
(p < 0.05), and identified 20 miRNAs. The significant
differentially expressed miRNAs are shown in Table 3.

In order to identify the target genes of significant differ-
entially expressed miRNAs, three databases (Targetscan,
miRanda and PicTar) were used [20–23]. The miRNA-
mRNA pairs were extracted for each significant differ-
entially expressed miRNA. In order to include verified
miRNA-mRNA pairs, we also extracted the miRNA-
mRNA pairs from the miRTarBase [25, 26]. And the
miRNA-mRNA pairs of which mRNA is a gene of
maximally functional module were chosen. Then, we estab-
lished the miRNA-regulated PIN, which showed a negative
correlation between the miRNA and the mRNA. The
miRNA-regulated PIN, which is constructed of the genes in
the functional modules, is shown in Table 4 and Fig. 6.
Eight genes and 14 miRNAs were identified to have

significant differential expression changes. Each of these
genes was regulated by multiple miRNAs. Due to the
miRNAs control of gene expression, either by degrad-
ation of the target mRNAs or by inhibition of protein
translation, miRNA-regulated PPI networks can uncover
new rules of miRNA regulation or protein interaction.
Thus, we predicted the potential functions of miRNAs
based on the function of their target genes as shown in
Table 5.
Twelve miRNAs were extracted which associated with

6 biological pathways including response to drug, metab-
olism of xenobiotics by cytochrome P450, drug metabol-
ism, linoleic acid metabolism, cancer pathways, and
focal adhesion through regulation of 8 target genes. The
results suggest that miR-335 influences drug metabolism
through negative regulation of CYP2E1, which is a drug
metabolizing enzyme that is affected by rifampin treat-
ment. Therefore, it is possible that rifampin may alter
miRNA expression, which in turn affects the expression
of the drug metabolizing enzyme gene CYP2E1. MiR-
186 was found to regulate two genes (CEBPA, CREBBP),
which were associated with cancer pathways. MiR-186,

Fig. 6 The miRNA-regulated PIN which is constructed by the genes of functional modules

Table 4 The miRNA-regulated PIN which constructed by the
genes of functional modules

Gene list logFC miRNA P-value Fold change

CYP2E1 −1.4341 miR-335 0.0242 1.3300

CAV1 −0.8518 miR-34b 0.1753 185.3764

miR-886-3p 0.0001 1.5645

miR-218 0.0499 1.9012

miR-576-3p 0.0453 2.1916

CAV2 −0.5386 miR-200c 0.0913 4.8313

miR-576-3p 0.0453 2.1916

CEBPA 0.5812 miR-186 0.0017 0.8356

CREBBP 0.3821 miR-186 0.0017 0.8356

miR-95 0.0216 0.6320

miR-769 0.1249 0.8388

EGLN2 0.4574 miR-202 0.0396 0.5988

let-7 g 0.0435 0.8402

ITGA1 −0.3754 miR-616 0.0446 1.3337

miR-660 0.0297 1.2642

miR-576-3p 0.0453 2.1916

miR-335 0.0242 1.3300

THBS1 −0.3951 miR-886-3p 0.0001 1.5645

miR-335 0.0242 1.3300

miR-616 0.0446 1.3337

miR-92a 0.0169 1.1319
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miR-769, miR-95, miR-202 and let-7 g were also relevant
to cancer pathways, but did not serve other functions.
Previous studies have demonstrated that rifampin also
inhibited anti-angiogenesis by regulating the expression of
multiple miRNAs (miR-34b, miR-886-3p, miR-218, miR-
576-3p, miR-200c, miR-616, miR-660, miR-335, miR-92a),
and further induced the gene expression of BIRC3, CAV1,
CAV2, FN1, ITGA1 and THBS1.

Conclusions
In conclusion, a novel integrative network-based method
was used to identify the functional modules and discover
the potential functions of miRNAs based on human pro-
tein network, mRNA and miRNA expression profile in
rifampin treated hepatocytes. Furthermore, this method
identifies 19 genes and 7 crucial biological pathways. By
analysing the miRNA-regulated PIN, we suggested that
12 miRNAs were associated with 6 biological pathways
through regulation of 8 target genes. Our results suggest
that rifampin contributes to changes in the expression of
genes and miRNAs, and induces multiple biological
pathways. This study not only provides an insight into
functional modules that are associated with rifampin-
treated human hepatocytes in human protein interaction
network, it also shows that the integrated analysis of
mRNA, miRNA expression profile and PIN can be used
to study the molecular mechanism of rifampin-induced
drug disposition.

Additional files

Additional file 1: P-values, Fold Change and false discovery rates (FDR)
for the genes of the maximally functional module. (PDF 161 kb)

Additional file 2: P-values, Fold Change and false discovery rates (FDR)
for the genes of the five functional modules. (PDF 105 kb)

Additional file 3: Top 10 GO terms and KEGG terms for the genes in
functional modules from the DAVID were provided as Additional file 3.
(PDF 264 kb)

Declarations
Publication charges for this article have been funded by the National Key
Scientific Instrument and Equipment Development Projects of China

(2012YQ04014001 and 2012YQ04014010), National Natural Science
Foundation of China (61471139), Fundamental Research Funds for the
Central Universities (HEUCF160412), Natural Science Fund of Heilongjiang
Province (F201331, F201241).
This article has been published as part of BMC Genomics Volume 17 Supplement
7, 2016: Selected articles from the International Conference on Intelligent Biology
and Medicine (ICIBM) 2015: genomics. The full contents of the supplement are
available online at http://bmcgenomics.biomedcentral.com/articles/supplements/
volume-17-supplement-7.

Availability of data and materials
The complete RNA-seq data used in this paper can be downloaded from
the GEO database with the accession number: GSE79933; The complete
microRNA OpenArray data used in this paper can be downloaded from
http://compbio.iupui.edu/group/6/pages/rifampin.

Authors’ contributions
JL and WY developed the programs and workflows, analysed the data, and
wrote the manuscript. LW, XFD and YW contributed to the data analysis. WC
provided some advice on analysis and contributed partly to writing of the
manuscript. CZX and WXF contributed to the computational analyses. YLD,
TCS was responsible for sample collection and processing for analysis. HL
and YLL conceived and directed the project, arranged the sampling,
provided advice on analysis, and contributed to writing of the manuscript.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1College of Automation, Harbin Engineering University, 145 Nantong Street,
Nangang District, Harbin, Heilongjiang 150001, China. 2Network Information
Center, Qiqihar University, No.42, Wenhua Street, Qiqihar, Heilongjiang
161006, China. 3Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN, USA. 4Division of Clinical
Pharmacology, Department of Medicine, Indiana University School of
Medicine, Indianapolis, IN, USA. 5Center for Computational Biology and
Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.

Published: 22 August 2016

References
1. Koyuturk M. Algorithmic and analytical methods in network biology. Wiley

Interdiscip Rev Syst Biol Med. 2010;2(3):277–92.
2. Lin CC, Chen YJ, Chen CY, Oyang YJ, Juan HF, Huang HC. Crosstalk between

transcription factors and microRNAs in human protein interaction network.
BMC Syst Biol. 2012;6:18.

3. Gennarino VA, D’Angelo G, Dharmalingam G, Fernandez S, Russolillo G,
Sanges R, Mutarelli M, Belcastro V, Ballabio A, Verde P, et al. Identification of
microRNA-regulated gene networks by expression analysis of target genes.
Genome Res. 2012;22(6):1163–72.

4. Egelund EF, Isaza R, Brock AP, Alsultan A, An G, Peloquin CA. Population
pharmacokinetics of rifampin in the treatment of Mycobacterium
tuberculosis in Asian elephants. J Vet Pharmacol Ther. 2015;38(2):137–43.

5. Liu CL, Lim YP, Hu ML. Fucoxanthin attenuates rifampin-induced
cytochrome P450 3A4 (CYP3A4) and multiple drug resistance 1 (MDR1)
gene expression through pregnane X receptor (PXR)-mediated pathways in
human hepatoma HepG2 and colon adenocarcinoma LS174T cells. Marine
drugs. 2012;10(1):242–57.

6. Mahatthanatrakul W, Nontaput T, Ridtitid W, Wongnawa M, Sunbhanich M.
Rifampin, a cytochrome P450 3A inducer, decreases plasma concentrations
of antipsychotic risperidone in healthy volunteers. J Clin Pharm Ther.
2007;32(2):161–7.

Table 5 The potential functions of miRNAs

DAVID (Term) miRNA

GO: Response to drug miR-34b, miR-886-3p, miR-218,
miR-576-3p, miR-200c

KEGG: Metabolism of xenobiotics
by cytochrome P450

miR-335

KEGG: Drug metabolism miR-335

KEGG: Linoleic acid metabolism miR-335

KEGG: Pathways in cancer miR-186, miR-95, miR-769

Focal adhesion miR-34b, miR-886-3p, miR-218,
miR-576-3p, miR-200c, miR-616,
miR-660, miR-335, miR-92a

The Author(s) BMC Genomics 2016, 17(Suppl 7):517 Page 269 of 325

dx.doi.org/10.1186/s12864-016-2909-6
dx.doi.org/10.1186/s12864-016-2909-6
dx.doi.org/10.1186/s12864-016-2909-6
http://bmcgenomics.biomedcentral.com/articles/supplements/volume-17-supplement-7
http://bmcgenomics.biomedcentral.com/articles/supplements/volume-17-supplement-7
http://compbio.iupui.edu/group/6/pages/rifampin


7. Takahashi K, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Integrated Analysis
of Rifampicin-induced MicroRNA and Gene Expression Changes in Human
Hepatocytes. Drug Metab Pharmacokinet. 2014;29(4):333–40.

8. Ramamoorthy A, Liu Y, Philips S, Desta Z, Lin H, Goswami C, Gaedigk A, Li L,
Flockhart DA, Skaar TC. Regulation of microRNA expression by rifampin in
human hepatocytes. Drug Metab Dispos. 2013;41(10):1763–8.

9. Kim B, Moon JY, Choi MH, Yang HH, Lee S, Lim KS, Yoon SH, Yu KS, Jang IJ,
Cho JY. Global metabolomics and targeted steroid profiling reveal that
rifampin, a strong human PXR activator, alters endogenous urinary steroid
markers. J Proteome Res. 2013;12(3):1359–68.

10. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key
regulator of xenobiotic metabolism. Endocr Rev. 2002;23(5):687–702.

11. Benson EA, Eadon MT, Desta Z, Liu Y, Lin H, Burgess KS, Segar MW, Gaedigk
A, Skaar TC. Rifampin Regulation of Drug Transporters Gene Expression and
the Association of MicroRNAs in Human Hepatocytes. Front. Pharmacol.
2016;7:111.

12. Shichiri M, Fukai N, Kono Y, Tanaka Y. Rifampicin as an oral angiogenesis
inhibitor targeting hepatic cancers. Cancer Res. 2009;69(11):4760–8.

13. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S,
Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al.
Human Protein Reference Database–2009 update. Nucleic Acids Res.
2009;37(Database issue):D767–72.

14. Wang J, Huo K, Ma L, Tang L, Li D, Huang X, Yuan Y, Li C, Wang W, Guan W,
et al. Toward an understanding of the protein interaction network of the
human liver. Mol Syst Biol. 2011;7:536.

15. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and
analysis of biological networks. Methods Mol Biol. 2011;696:291–303.

16. Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics.
2002;18 Suppl 1:S233–40.

17. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Muller T. Identifying
functional modules in protein-protein interaction networks: an integrated
exact approach. Bioinformatics. 2008;24(13):i223–31.

18. Beisser D, Klau GW, Dandekar T, Muller T, Dittrich MT. BioNet: an
R-Package for the functional analysis of biological networks. Bioinformatics.
2010;26(8):1129–30.

19. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration
and interpretation of large-scale molecular data sets. Nucleic Acids Res.
2012;40(Database issue):D109–14.

20. Helvik SA, Snove Jr O, Saetrom P. Reliable prediction of Drosha processing
sites improves microRNA gene prediction. Bioinformatics. 2007;23(2):142–9.

21. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are
conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

22. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-
pairing stability and high target-site abundance decrease the proficiency of
lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011;18(10):1139–46.

23. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource:
targets and expression. Nucleic Acids Res. 2008;36(Database issue):D149–53.

24. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P,
da Piedade I, Gunsalus KC, Stoffel M, et al. Combinatorial microRNA target
predictions. Nat Genet. 2005;37(5):495–500.

25. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ,
Chiu CM, et al. miRTarBase: a database curates experimentally validated
microRNA-target interactions. Nucleic Acids Res. 2011;39 (Database issue):D163–9.

26. Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, Chu CF, Huang
HY, Lin CM, Ho SY, et al. miRTarBase update 2014: an information resource
for experimentally validated miRNA-target interactions. Nucleic Acids Res.
2014;42(Database issue):D78–85.

27. Assefa SA, Preston MD, Campino S, Ocholla H, Sutherland CJ, Clark TG.
estMOI: estimating multiplicity of infection using parasite deep sequencing
data. Bioinformatics. 2014;30(9):1292–4.

28. Lam JL, Shugarts SB, Okochi H, Benet LZ. Elucidating the effect of final-day
dosing of rifampin in induction studies on hepatic drug disposition and
metabolism. J Pharmacol Exp Ther. 2006;319(2):864–70.

29. Anderson MS, Cote J, Liu Y, Stypinski D, Auger P, Hohnstein A, Rasmussen S,
Johnson-Levonas AO, Gutstein DE. Effects of Rifampin, a potent inducer of
drug-metabolizing enzymes and an inhibitor of OATP1B1/3 transport, on the
single dose pharmacokinetics of anacetrapib. J Clin Pharmacol. 2013;53(7):746–52.

30. Hamilton M, Wolf JL, Drolet DW, Fettner SH, Rakhit AK, Witt K, Lum BL. The
effect of rifampicin, a prototypical CYP3A4 inducer, on erlotinib pharmacokinetics
in healthy subjects. Cancer Chemother Pharmacol. 2014;73(3):613–21.

31. Loboz KK, Gross AS, Williams KM, Liauw WS, Day RO, Blievernicht JK, Zanger
UM, McLachlan AJ. Cytochrome P450 2B6 activity as measured by
bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin
Pharmacol Ther. 2006;80(1):75–84.

32. Shichiri M, Tanaka Y. Inhibition of cancer progression by rifampicin: involvement
of antiangiogenic and anti-tumor effects. Cell Cycle. 2010;9(1):64–8.

33. Fardel O, Lecureur V, Loyer P, Guillouzo A. Rifampicin enhances anti-cancer
drug accumulation and activity in multidrug-resistant cells. Biochem
Pharmacol. 1995;49(9):1255–60.

34. Cho YY, Jeong HU, Kim JH, Lee HS. Effect of honokiol on the induction of
drug-metabolizing enzymes in human hepatocytes. Drug Des Devel Ther.
2014;8:2137–45.

35. Luo X, Kranzler HR, Zuo L, Wang S, Schork NJ, Gelernter J. Multiple ADH
genes modulate risk for drug dependence in both African- and European-
Americans. Hum Mol Genet. 2007;16(4):380–90.

36. Kumar S, Ingle H, Mishra S, Mahla RS, Kumar A, Kawai T, Akira S, Takaoka A,
Raut AA, Kumar H. IPS-1 differentially induces TRAIL, BCL2, BIRC3 and PRKCE
in type I interferons-dependent and -independent anticancer activity.
Cell Death Dis. 2015;6:e1758.

37. Ando T, Ishiguro H, Kimura M, Mitsui A, Mori Y, Sugito N, Tomoda K, Mori R,
Harada K, Katada T, et al. The overexpression of caveolin-1 and caveolin-2
correlates with a poor prognosis and tumor progression in esophageal
squamous cell carcinoma. Oncol Rep. 2007;18(3):601–9.

38. Capozza F, Trimmer C, Castello-Cros R, Katiyar S, Whitaker-Menezes D,
Follenzi A, Crosariol M, Llaverias G, Sotgia F, Pestell RG, et al. Genetic
ablation of Cav1 differentially affects melanoma tumor growth and
metastasis in mice: role of Cav1 in Shh heterotypic signaling and
transendothelial migration. Cancer Res. 2012;72(9):2262–74.

39. Elsheikh SE, Green AR, Rakha EA, Samaka RM, Ammar AA, Powe D, Reis-Filho
JS, Ellis IO. Caveolin 1 and Caveolin 2 are associated with breast cancer
basal-like and triple-negative immunophenotype. Br J Cancer. 2008;99(2):327–34.

40. Amundson SA, Smilenov LB. Integration of biological knowledge and gene
expression data for biomarker selection: FN1 as a potential predictor of radiation
resistance in head and neck cancer. Cancer Biol Ther. 2010;10(12):1252–5.

41. Viana Lde S, Affonso Jr RJ, Silva SR, Denadai MV, Matos D, Salinas de Souza
C, Waisberg J. Relationship between the expression of the extracellular
matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological
parameters of tumor progression and colorectal cancer dissemination.
Oncology. 2013;84(2):81–91.

42. Yim DH, Zhang YW, Eom SY, Moon SI, Yun HY, Song YJ, Youn SJ, Hyun T,
Park JS, Kim BS, et al. ITGA1 polymorphisms and haplotypes are associated
with gastric cancer risk in a Korean population. World J Gastroenterol.
2013;19(35):5870–6.

43. Lin XD, Chen SQ, Qi YL, Zhu JW, Tang Y, Lin JY. Polymorphism of THBS1
rs1478604 A > G in 5-untranslated region is associated with lymph node
metastasis of gastric cancer in a Southeast Chinese population. DNA Cell
Biol. 2012;31(4):511–9.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Genomics 2016, 17(Suppl 7):517 Page 270 of 325


	Abstract
	Background
	Methods
	Results and Disccussion
	Conclusions

	Background
	Methods
	Data
	Construction of RrPIN
	Identification of the functional modules
	Enrichment analysis of functional modules
	Identification of miRNAs and analysis of their functions

	Results
	SDGs and RrPIN
	Identification and analysis of the functional modules
	Enrichment analysis of functional modules
	Joint analysis of key genes and associated miRNAs

	Conclusions
	Additional files
	Declarations
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

