13 research outputs found

    21 世纪海上丝绸之路”建设面临的挑战与对策

    Get PDF
    In the 21st century, the change of the international marine strategic situation provides both opportunities and challenges for China's strategy of building a powerful marine country. Against this background, China has implemented the strategy of the “21st Century Maritime Silk Road”. Focuses on the analysis of the achievements and challenges of China's “21st Century Maritime Silk Road” construction, and puts forward corresponding countermeasures based on the analysis

    An empirical method to compensate the NMR calibrated porosity of the tight volcanic rocks based on comprehensive laboratory studies

    Get PDF
    The nuclear magnetic resonance (NMR) response is known to deviate from the true value for the volcanic reservoirs, particularly when the pore throat size is ultralow. Consequently, the related petrophysical parameters such as porosity, permeability, and pore size distribution from NMR measurements are greatly influenced. An empirical method to correct the NMR calibrated porosity for the tight volcanic rocks is proposed after comprehensive investigations of influential factors combined with mineralogical and petrophysical analyses. The laboratory result indicates that the relative porosity deviation is negatively correlated with the geometric mean of the transversal relaxation time (T2) but positively correlated with the clay content. Moreover, both the paramagnetic materials, such as the manganese (Mn) content, and the diamagnetic materials, such as the magnesium (Mg) content, contribute to the NMR relaxation intensity reduction but with different mechanisms. The NMR calibrated porosity can be compensated through multiple regressions with these controlling factors, which can be generalized to other tight volcanic reservoirs

    The Spatial Factor, Rather than Elevated CO2, Controls the Soil Bacterial Community in a Temperate Forest Ecosystem▿ †

    No full text
    The global atmospheric carbon dioxide (CO2) concentration is expected to increase continuously over the next century. However, little is known about the responses of soil bacterial communities to elevated CO2 in terrestrial ecosystems. This study aimed to partition the relative influences of CO2, nitrogen (N), and the spatial factor (different sampling plots) on soil bacterial communities at the free-air CO2 enrichment research site in Duke Forest, North Carolina, by two independent techniques: an entirely sequencing-based approach and denaturing gradient gel electrophoresis. Multivariate regression tree analysis demonstrated that the spatial factor could explain more than 70% of the variation in soil bacterial diversity and 20% of the variation in community structure, while CO2 or N treatment explains less than 3% of the variation. For the effects of soil environmental heterogeneity, the diversity estimates were distinguished mainly by the total soil N and C/N ratio. Bacterial diversity estimates were positively correlated with total soil N and negatively correlated with C/N ratio. There was no correlation between the overall bacterial community structures and the soil properties investigated. This study contributes to the information about the effects of elevated CO2 and soil fertility on soil bacterial communities and the environmental factors shaping the distribution patterns of bacterial community diversity and structure in temperate forest soils

    Effect of Fe3O4 nanoparticles on positive streamer propagation in transformer oil

    No full text
    Fe3O4 nanoparticles with an average diameter of 10 nm were prepared and used to modify streamer characteristic of transformer oil. It was found that positive streamer propagation velocity in transformer oil-based Fe3O4 nanofluid is greatly reduced by 51% in comparison with that in pure oil. The evolution of streamer shape is also dramatically affected by the presence of nanoparticles, changing from a tree-like shape with sharp branches in pure oil to a bush-like structure with thicker and denser branches in nanofluid. The TSC results reveal that the modification of Fe3O4 nanoparticle can greatly increase the density of shallow trap and change space charge distribution in nanofluid by converting fast electrons into slow electrons via trapping and de-trapping process in shallow traps. These negative space charges induced by nanoparticles greatly alleviate the electric field distortion in front of the positive streamer tip and significantly hinder the propagation of positive streamer

    Photothermal Catalytic Reduction of CO<sub>2</sub> by Cobalt Silicate Heterojunction Constructed from Clay Minerals

    No full text
    The coupled utilization of solar and thermal energy is considered an efficient way to improve the efficiency of CO2 reduction. Herein, palygorskite (Pal) clay is as a silicon source, while Co2+ is introduced to prepare two-dimensional Co2SiO4 nanosheets, and the excess of Co2+ leads to the growth of Co3O4 on the surface of Co2SiO4 to obtain an S-scheme Co2SiO4/Co3O4−x heterojunction, which facilitates the charge transfer and maintains higher redox potentials. Benefiting from black color and a narrow band gap, the cobalt oxide on the surface can increase the light absorption and produce a local photothermal effect. Under proper thermal activation conditions, the photoelectrons captured by the abundant oxygen vacancies can obtain a secondary leap to the semiconductor conduction band (CB), suppressing the recombination of electron-hole pairs, thus favoring the electron transfer on Co2SiO4/Co3O4−x. The composites not only have abundant oxygen vacancies, but also have a large specific surface area for the adsorption and activation of CO2. The yields of CH3OH on Co2SiO4/Co3O4−5% reach as high as 48.9 μmol·g−1·h−1 under simulated sunlight irradiation. In situ DRIFTS is used to explore the photocatalytic reduction CO2 mechanism. It is found that the thermal effect facilitates the generation of the key intermediate COOH* species. This work provides a new strategy for photothermal catalytic CO2 reduction by taking advantage of natural clay and solar energy

    Effects of Nanoparticle Materials on Prebreakdown and Breakdown Properties of Transformer Oil

    No full text
    In order to reveal the effects of nanoparticle materials on prebreakdown and breakdown properties of transformer oil, three types of nanoparticle materials, including conductive Fe3O4, semiconductive TiO2 and insulating Al2O3 nanoparticles, were prepared with the same size and surface modification. An experimental study on the breakdown strength and prebreakdown streamer propagation characteristics were investigated for transformer oil and three types of nanofluids under positive lightning impulse voltage. The results indicate that the type of nanoparticle materials has a notable impact on breakdown strength and streamer propagation characteristics of transformer oil. Breakdown voltages of nanofluids are markedly increased by 41.3% and 29.8% respectively by the presence of Fe3O4 and TiO2 nanoparticles. Whereas a slight increase of only 7.4% is observed for Al2O3 nanofluid. Moreover, main discharge channels with thicker and denser branches are formed and the streamer propagation velocities are greatly lowered both in Fe3O4 and TiO2 nanofluids, while no obvious change appears in the propagation process of streamers in Al2O3 nanofluid in comparison with that in pure oil. The test results of trap characteristics reveal that the densities of shallow traps both in Fe3O4 and TiO2 nanofluids are much higher than that in Al2O3 nanofluid and pure oil, greatly reducing the distortion of the electric field. Thus, the propagations of positive streamers in the nanofluids are significantly suppressed by Fe3O4 and TiO2 nanoparticles, leading to the improvements of breakdown strength

    Effect of Nanoparticle Morphology on Pre-Breakdown and Breakdown Properties of Insulating Oil-Based Nanofluids

    No full text
    Nanoparticles currently in use are challenged in further improving the dielectric strength of insulating oil. There is a great need for a new type of nanoparticle to promote the application of insulating oil-based nanofluids in electric industries. This paper experimentally investigates the effect of nanoparticle morphology on pre-breakdown and breakdown properties of insulating oil-based nanofluids. The positive impulse breakdown voltage of insulating oil can be significantly increased by up to 55.5% by the presence of TiO2 nanorods, up to 1.23 times that of TiO2 nanospheres. Pre-breakdown streamer propagation characteristics reveal that streamer discharge channels turn into a bush-like shape with much denser and shorter branches in the nanofluid with TiO2 nanorods. Moreover, the propagation velocity of streamers is dramatically decreased to 34.7% of that in the insulating oil. The greater improvement of nanorods on the breakdown property can be attributed to the lower distortion of the electric field. Thus, when compared with nanospheres, pre-breakdown streamer propagation of nanofluid is much more suppressed with the addition of nanorods, resulting in a greater breakdown voltage
    corecore