44 research outputs found

    Non-growing/growing season non-uniform-warming increases precipitation use efficiency but reduces its temporal stability in an alpine meadow

    Get PDF
    There are still uncertainties on the impacts of season-non-uniform-warming on plant precipitation use efficiency (PUE) and its temporal stability (PUEstability) in alpine areas. Here, we examined the changes of PUE and PUEstability under two scenes of non-growing/growing season non-uniform-warming (i.e., GLNG: growing-season-warming lower than non-growing-season-warming; GHNG: growing-season-warming higher than non-growing-season-warming) based on a five-year non-uniform-warming of non-growing/growing season experiment. The GLNG treatment increased PUE by 38.70% and reduced PUEstability by 50.47%, but the GHNG treatment did not change PUE and PUEstability. This finding was mainly due to the fact that the GLNG treatment had stronger influences on aboveground biomass (AGB), non-growing-season soil moisture (SMNG), temporal stability of AGB (AGBstability), temporal stability of non-growing-season air temperature (Ta_NG_stability), temporal stability of growing-season vapor pressure deficit (VPDG_stability) and temporal stability of start of growing-season (SGSstability). Therefore, the warming scene with a higher non-growing-season-warming can have greater influences on PUE and PUEstability than the warming scene with a higher growing-season-warming, and there were possibly trade-offs between plant PUE and PUEstability under season-non-uniform-warming scenes in the alpine meadow

    Asymmetric warming among elevations may homogenize plant α-diversity and aboveground net primary production of alpine grasslands

    Get PDF
    It is well known that asymmetric warming among elevations (i.e., warming magnitude increases with increasing elevation) will weaken the difference of air temperature among elevations. However, it remains controversial on whether asymmetric warming among elevations can homogenize plant α-diversity and above-ground net primary production (ANPP) in alpine regions. In the present study, we conducted an experiment of asymmetric warming among elevations in alpine grasslands, Northern Tibet since 2010. There were four experiment treatments, including a treatment under natural conditions at elevation 4,313 m (C4313), a treatment under natural conditions at elevation 4,513 m (C4513), a treatment under warming conditions at elevation 4,513 m (W4513) and a treatment under warming conditions at elevation 4,693 m (W4693). We investigated ANPP, taxonomic α-diversity (i.e., species richness, Shannon, Simpson and Pielou) and phylogenetic α-diversity (mean nearest taxon distance, MNTD; phylogenetic diversity, PD) in 2011–2019. There were no significant differences of mean air temperature between C4313 and W4513, or between C4513 and W4693 in 2011–2019, indicating the differences of air temperature were eliminated among elevations. Then we found that the differences of plant α-diversity and ANPP were also eliminated among elevations: (1) there were no significant differences of ANPP, Pielou and MNTD between C4313 and W4513, or between C4513 and W4693 in 2011–2019. (2) There were also no significant differences of mean species richness, Shannon and Simpson between C4513 and W4693 in 2011–2019. (3) There were also no significant differences of ANPP, species richness, Shannon, Simpson, Pielou, PD and MNTD between C4313 and W4513, or C4513 and W4693 in 2019. Therefore, asymmetric warming among elevations may homogenize plant α-diversity and aboveground net primary production in alpine grasslands, at least in Northern Tibet

    Influences of human activity and climate change on growing-season soil moisture in the Qinghai–Tibet grasslands from 2000 to 2020

    Get PDF
    Soil moisture (SM) serves as a vital indicator reflecting environmental water conditions, but significant uncertainties still persist regarding how human activity and climate change affect SM. In this study, we quantified the influences of human activity and climate change on growing-season SM in the Qinghai–Tibet grasslands from 2000 to 2020. Climate change led to a decline in spatially mean SM at a rate of −0.01 and −0.06 g g−1 year−1 at 0–10 and 10–20 cm, respectively. Nonetheless, climate change caused the soil to become wetter in 39.97% and 22.29% areas at 0–10 and 10–20 cm, respectively. Human activity resulted in a decline in spatially mean SM by 36% and 21% at 0–10 and 10–20 cm, respectively. Nonetheless, human activity caused soil to become wetter in 2.82% areas at 0–10 cm and 30.03% areas at 10–20 cm. Therefore, both climate change and human activity have contributed to a pattern where the whole Qinghai–Tibet grasslands became drier while specific parts became wetter during the last 20 years. In addition to temperature and precipitation change, we should also pay attention to the response of SM to radiation change

    Grazing Exclusion to Recover Degraded Alpine Pastures Needs Scientific Assessments across the Northern Tibetan Plateau

    Get PDF
    The northern Tibetan Plateau is the most traditional and important semi- nomadic region in Tibet. The alpine vegetation is sensitive and vulnerable to climate change and human activities, and is also important as an ecological security in protecting the headwaters of major rivers in Asia. Therefore, the Tibetan alpine grasslands have fundamental significance to both Mainland China and South Asia. The pasture degradation, however, likely threatens the livelihood of residents and the habitats of wildlife on this plateau. Since 2004, the government has launched a series of ecological restoration projects and economic compensatory payment polices. Many fences were additionally built on degraded pastures to prevent new degradation, to promote functionality recovery, and to balance the stocking rate with forage productivity. The grazed vs. fenced paired pastures across different zonal grassland communities along evident environmental gradients provide us with a natural comparative experiment platform to test the relative contributions of natural and anthropogenic factors. This study critically reviews the background, significance of and debates on short-term grazing exclusion with fences in this region. We also aim to figure out scientific and standardized workflows for assessing the effectiveness of grazing exclusion and compensatory payments in the future. View Full-Tex

    Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-plant Corn in Tibet

    Get PDF
    The objective of this study was to evaluate the effects of molasses and propionic acid on the fermentation quality and aerobic stability of total mixed ration (TMR) silages prepared with whole-plant corn in Tibet. TMR (354 g/kg DM) was ensiled with four different treatments: no additive (control), molasses (M), propionic acid (P), and molasses+propionic acid (PM), in laboratory silos (250 mL) and fermented for 45 d. Silos were opened and silages were subjected to an aerobic stability test for 12 days, in which chemical and microbiological parameters of TMR silages were measured to determined the aerobic deterioration. After 45 d of ensiling, the four TMR silages were of good quality with low pH value and ammonia/total N (AN), and high lactic acid (LA) content and V-scores. M silage showed the highest (p105 cfu/g FM), however, it appeared to be more stable as indicated by a delayed pH value increase. P and PM silages showed fewer yeasts (<105 cfu/g FM) (p<0.05) and were more stable than the control and M silages during aerobic exposure. It was concluded that M application increased LA content and improved aerobic stability of TMR silage prepared with whole-plant corn in Tibet. P application inhibited lactic acid production during ensiling, and apparently preserved available sugars which stimulated large increases in lactic acid during aerobic exposure stage, which resulted in greater aerobic stability of TMR silage

    Fiber-to-Chip Three-Dimensional Silicon-on-Insulator Edge Couplers with High Efficiency and Tolerance

    No full text
    The edge coupler is an indispensable optical device for connecting an external fiber and on-chip waveguide. The coupling efficiency of the edge coupler affects the effective integration of optical circuits. In this study, three-dimensional (3D) edge couplers with high efficiency and tolerance are proposed. The high coupling efficiency of the 3D edge couplers is verified by theoretical calculations. Three couplers are fabricated on a thick-silicon platform via 3D grayscale lithography. At the 1550 nm band, the fiber-to-chip experimental data show that the maximum coupling efficiencies of the three edge couplers are 0.70 dB and 1.34 dB, 0.80 dB and 1.60 dB, and 1.00 dB and 1.14 dB for the TE and TM modes, respectively. At the 1550 nm band, misalignment tolerances measurement data reveal 0.8 dB/0.9 dB tolerance of ±5 μm in the horizontal direction, and 1.7 dB/1.0 dB tolerance of ±2 μm in the vertical direction for TE/TM mode. This study provides a new idea for the design of 3D edge couplers and demonstrates significant superiority in research and industrial applications

    Modeling Nutrition Quality and Storage of Forage Using Climate Data and Normalized-Difference Vegetation Index in Alpine Grasslands

    No full text
    Quantifying forage nutritional quality and pool at various spatial and temporal scales are major challenges in quantifying global nitrogen and phosphorus cycles, and the carrying capacity of grasslands. In this study, we modeled forage nutrition quality and storage using climate data under fencing conditions, and using climate data and a growing-season maximum normalized-difference vegetation index under grazing conditions based on four different methods (i.e., multiple linear regression, random-forest models, support-vector machines and recursive-regression trees) in the alpine grasslands of Tibet. Our results implied that random-forest models can have greater potential ability in modeling forage nutrition quality and storage than the other three methods. The relative biases between simulated nutritional quality using random-forest models and the observed nutritional quality, and between simulated nutrition storage using random-forest models and the observed nutrition storage, were lower than 2.00% and 6.00%, respectively. The RMSE between simulated nutrition quality using random-forest models and the observed nutrition quality, and between simulated nutrition storage using random-forest models and the observed nutrition storage, were no more than 0.99% and 4.50 g m−2, respectively. Therefore, random-forest models based on climate data and/or the normalized-difference vegetation index can be used to model forage nutrition quality and storage in the alpine grasslands of Tibet

    Improvement of Fermentation and Nutritive Quality of Straw-grass Silage by Inclusion of Wet Hulless-barley Distillers’ Grains in Tibet

    No full text
    In order to develop methods that would enlarge the feed resources in Tibet, mixtures of hulless-barley straw and tall fescue were ensiled with four levels (0, 10%, 20%, and 30% of fresh weight) of wet hulless-barley distillers’ grains (WHDG). The silos were opened after 7, 14 or 30 d of ensiling, and the fermentation characteristics and nutritive quality of the silages were analyzed. WHDG addition significantly improved fermentation quality, as indicated by the faster decline of pH, rapid accumulation of lactic acid (LA) (p<0.05), and lower butyric acid content and ammonia-N/total N (p<0.05) as compared with the control. These results indicated that WHDG additions not only effectively inhibited the activity of aerobic bacteria, but also resulted in faster and greatly enhanced LA production and pH value decline, which restricted activity of undesirable bacteria, resulting in more residual water soluble carbohydrates (WSC) in the silages. The protein content of WHDG-containing silages were significantly higher (p<0.05) higher than that of the control. In conclusion, the addition of WHDG increased the fermentation and nutritive quality of straw-grass silage, and this effect was more marked when the inclusion rate of WHDG was greater than 20%
    corecore