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Soil moisture (SM) serves as a vital indicator reflecting environmental water

conditions, but significant uncertainties still persist regarding how human activity

and climate change affect SM. In this study, we quantified the influences of

human activity and climate change on growing-season SM in the Qinghai–Tibet

grasslands from 2000 to 2020. Climate change led to a decline in spatially mean

SM at a rate of −0.01 and −0.06 g g−1 year−1 at 0–10 and 10–20 cm, respectively.

Nonetheless, climate change caused the soil to become wetter in 39.97% and

22.29% areas at 0–10 and 10–20 cm, respectively. Human activity resulted in a

decline in spatially mean SM by 36% and 21% at 0–10 and 10–20 cm, respectively.

Nonetheless, human activity caused soil to become wetter in 2.82% areas at 0–

10 cm and 30.03% areas at 10–20 cm. Therefore, both climate change and

human activity have contributed to a pattern where the whole Qinghai–Tibet

grasslands became drier while specific parts became wetter during the last 20

years. In addition to temperature and precipitation change, we should also pay

attention to the response of SM to radiation change.

KEYWORDS
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1 Introduction

Soil moisture (SM), as a vital water resource, plays a crucial role in plant growth

(Baumann et al., 2009; Bell et al., 2009; Berdanier and Klein, 2011). Under global change

scenarios, SM undergoes significant alterations, which can subsequently impact plant growth

through feedback mechanisms (Brito et al., 2013; Buttler et al., 2015; Berg et al., 2017).

Numerous studies have explored the response of SM to climate change or human activity and

their feedback, resulting in valuable scientific research achievements (Berg et al., 2017; Rigden

et al., 2020; Humphrey et al., 2021). These achievements provide crucial support for the high-

level development of human society (Flanagan and Johnson, 2005; Engel et al., 2009; Craine
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and Gelderman, 2011). However, previous studies have certain

limitations in two ways. First, they have primarily focused on the

influences of climate warming/cooling and decreased/increased

precipitation on SM and their feedback to terrestrial ecosystems,

whereas the influence of radiation change on SM and its feedback to

terrestrial ecosystems are still lacking (Barron-Gafford et al., 2011; Fu

et al., 2018). Radiation change is an integral part of climate change,

and under global climate change, radiation decreases (You et al.,

2010). It has been proven that radiation change can have obvious

effects on the nutritional quality and storage of plant herbage, species

diversity, and soil pH, which is even more important than climate

warming and precipitation change (Fu et al., 2022; Tian and Fu,

2022). Considering the close relationships between SM and forage

nutrition quality, species diversity, soil pH, etc. (Fu et al., 2018; Fu and

Sun, 2022), further studies are imperative to understand the influence

of brightening/dimming on SM. Second, whether climate change or

human activity leads to soil drying or wetting is still controversial,

and this uncertainty might be related to the relative intensity of

changes in various key factors of human activity and climate change

(Yu et al., 2019; Zhang and Fu, 2021). If precipitation does not change

or decrease, warming should cause a decrease in surface SM (Fu et al.,

2018; Han et al., 2023). Nonetheless, the influence of climate change

on SM becomes uncertain when both temperature and precipitation

increase simultaneously (Fu et al., 2018; Yu et al., 2019). If the

increased magnitude of SM triggered by elevated precipitation is

greater than the decreased magnitude of SM triggered by climate

warming, climate change will cause soil to become wet; otherwise, it

will cause the soil to become dry (Shen et al., 2015). Grazing reduces

transpiration by harvesting herbage from herbivores, whereas

nitrogen fertilizer addition generally increases transpiration by

increasing grassland productivity (Fu and Shen, 2016; Zhang and

Fu, 2021). The response of SM to grazing activities differs with

increasing grazing intensity and grazing season in grassland

ecosystems (Sun et al., 2021; Zhang and Fu, 2021). Accordingly, it

is essential to further strengthen studies on the influences of human

activity and climate change on SM.

The grasslands on the Qinghai–Tibet Plateau (TP) are

important parts of global grassland ecological systems. It is

commonly believed that climate warming and increased

precipitation on the TP led to an overall improvement of

grassland ecological systems, but they also caused deterioration in

some specific areas (Hu et al., 2020; Li et al., 2020). Nonetheless,

many studies have demonstrated that, in comparison to

precipitation, SM is more closely associated with grassland

productivity and forage nutrient quality, offering a better

reflection of the influence of environmental water conditions on

these aspects (Baumann et al., 2009; Fu et al., 2018). Therefore, SM

serves as a key limiting factor in grassland ecosystems, affecting

herbage yield, nutrient quality, and the development of animal

husbandry on the TP. Unfortunately, understanding its response to

human activities and climate change is limited and has been mainly

studied on a small scale (Fu et al., 2018; Dai et al., 2022), which

hinders accurate quantification of its influence on grassland

ecosystems across the region. Accordingly, it is essential to

strengthen studies on the response of SM to human activity and

climate change in the TP grasslands.
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The objective of this study is to examine the response of

growing season SM to human activity and climate change at 0–10

and 10–20 cm in the TP grasslands during the period of 2000–2020.

This study is expected to provide valuable insights into managing

soil water dynamics under the influence of human activity and

climate change. Furthermore, agricultural sector managers can

better identify soil drought by exploring the influence law of

human activity and climate change on SM. We hypothesized that

climate change caused soil wetting over the whole TP grasslands.

Based on previous studies (Sun et al., 2023; Zhang et al., 2023), we

hypothesized that human activities may alter the sensitivities of SM

to climate change.
2 Materials and methods

We utilized random forest models to derive monthly mean soil

moisture data (SMp_0-10, SMa_0-10, SMp_10-20, and SMa_10-20) during

the growing season (May–September) from 2000 to 2020 across the

TP grassland region (Wang and Fu, 2023). The randomForest

package of the R software was used to construct the random

forest models of SM (Wang and Fu, 2023). Observed SM at 0–10

cm, air temperature, precipitation, and radiation data inside the

enclosure were used to obtain the random forest models of SMp_0-10

(Wang and Fu, 2023). Observed SM at 0–10 cm, air temperature,

precipitation, radiation, and normalized difference vegetation index

(NDVI) data outside the enclosure were used to obtain the random

forest models of SMa_0-10 (Wang and Fu, 2023). Similarly, the

random forest models of SMp_10-20 and SMa_10-20 were constructed

(Wang and Fu, 2023).

SMp_0-10, SMa_0-10, SMp_10-20, and SMa_10-20 referred to the

potential SM at 0–10 cm, actual SM at 0–10 cm, potential SM at 10–

20 cm, and actual SM at 10–20 cm, respectively. Detailed

descriptions of the monthly precipitation, temperature, radiation,

and/or NDVI from 2000 to 2020 were reported in our previous

studies (Fu et al., 2022). We obtained growing season mean

SMp_0-10, SMa_0-10, SMp_10-20, and SMa_10-20 using corresponding

monthly SMp_0-10, SMa_0-10, SMp_10-20, and SMa_10-20 in 2000–2020,

respectively. We also calculated growing season total precipitation,

mean temperature, total radiation, and mean NDVI (GST, GSP,

GSRad, and GSNDVI) using monthly total precipitation, mean

temperature, total radiation, and NDVI, respectively. All these

values were computed for all pixels with a spatial resolution of 1

km × 1 km across the entire TP grasslands.

The slope is often used to reflect the change trend of a specific

variable (Fu et al., 2022; Wang et al., 2022; Sun et al., 2023) since we

obtained the slope of GSP (DGSP), GST (DGST), GSRad (DGSRad),
GSNDVI (DGSNDVI), SMp_0-10 (DSMp_0-10), SMa_0-10 (DSMa_0-10),

SMp_10-20 (DSMp_10-20), and SMa_10-20 (DSMa_10-20) using the

sens.slope function of the trend package. The ggscatter function

of the ggpubr package was used to obtain the relationship between

SMp_0-10, SMa_0-10, SMp_10-20, or SMa_10-20 and longitude, latitude,

elevation, GST, GSP, GSRad, DGST, DGSP, and DGSRad. The
ggscatter function of the ggpubr package was also used to obtain

the relationship between SMa_0-10 or SMa_10-20 and GSNDVI and

DGSNDVI. The varpart function of the vegan package was used to
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quantify the relative impacts of the three geographic variables (i.e.,

longitude, latitude, and elevation), or the three mean climate

condition variables (i.e., GST, GSP, and GSRad), or the three

climate change variables (i.e., DGST, DGSP, and DGSRad) on

SMp_0-10, SMa_0-10, SMp_10-20, or SMa_10-20. We quantified the

relative impacts of geographic position, mean climate conditions,

and climate change on SMp_0-10, SMa_0-10, SMp_10-20, or SMa_10-20.

The RSM_0-10 was the ratio of SMa_0-10 to SMp_0-10, and the

RSM_10-20 was the ratio of SMa_10-20 to SMp_10-20 (Equations 1 and 2).

RSM _0 – 10 =
SMa_ 0−10

SMp– 0−10
(1)

RSM _10 – 20 =
SMa_ 10−20

SMp– 10−20
(2)

Both the SMp_0-10 and SMp_10-20 were only affected by climate

change, whereas both the SMa_0-10 and SMa_10-20 were

simultaneously affected by climate change and human activity. In

other words, both the RSM_0-10 and RSM_10-20 exclude the effects of

climate change, and they are only affected by human activity.

Therefore, the RSM_0-10 and RSM_10-20 can indicate the effects of

human activity on SM at 0–10 and 10–20 cm, respectively. We

obtained the change slope of RSM_0-10 and RSM_10-20 (i.e., DRSM_0-10

and DRSM_10-20) (Fu et al., 2022). The ggscatter function of the

ggpubr package was used to obtain the relationship between RSM_0-

10 or RSM_10-20, or DRSM_0-10 or DRSM_10-20 and longitude, latitude,

elevation, GST, GSP, GSRad, GSNDVI, DGST, DGSP, DGSRad, and
DGSNDVI. We quantified the relative impacts of the three

geographic variables (i.e., longitude, latitude, and elevation), or

the three mean climate condition variables (i.e., GST, GSP, and

GSRad), or the three climate change variables (i.e., DGST, DGSP,
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and DGSRad) on RSM_0-10, RSM_10-20, DRSM_0-10, and DRSM_10-20.

We quantified the relative impacts of geographic position, mean

climate conditions + GSNDVI, and climate change + DGSNDVI on
RSM_0-10, RSM_10-20, DRSM_0-10, and DRSM_10-20. The statistical

software used was R.4.2.2.
3 Results

3.1 DSM and its relationships with
environmental variables

Different regions exhibited different patterns for DSMp_0-10,

DSMp_10-20, DSMa_0-10, and DSMa_10-20 (Figure 1). Spatially mean

values of DSMp_0-10, DSMp_10-20, DSMa_0-10, and DSMa_10-20

were −0.01 (from −0.46 to 0.54 g g−1 year−1), −0.06 (from −0.42

to 0.27 g g−1 year−1), 0.02 (from −0.42 to 0.51 g g−1 year−1),

and −0.02 g g−1 year−1 (from −0.56 to 0.49 g g−1 year−1),

respectively. There were 39.97%, 22.29%, 56.60%, and 34.71%

areas showing increasing trends for DSMp_0-10, DSMp_10-20,

DSMa_0-10, and DSMa_10-20, respectively. In contrast, there were

60.03%, 77.67%, 43.40%, and 65.29% areas showing decreasing

trends for DSMp_0-10, DSMp_10-20, DSMa_0-10, and DSMa_10-20,

respectively. Longitude had higher influences on DSMp_0-10 and

DSMa_0-10 than latitude and elevation (Figure S1). In contrast,

latitude had higher influences on DSMp_10-20 and DSMa_10-20 than

longitude and elevation (Figure S2). Compared to GST and GSRad,

GSP had higher influences on DSMp_0-10, DSMp_10-20, and DSMa_10-

20 (Figures S3, S4). In contrast, compared to GST and GSP, GSRad

had a greater effect on DSMa_0-10 (Figure S3). The DGSP had the

greatest effects on DSMp_0-10 and DSMa_0-10, and the DGST had the
B

C D

A

FIGURE 1

Spatial distribution for (A) DSMp_0–10, (B) DSMa_0–10, (C) DSMp_10–20, and (D) DSMa_10–20.
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lowest effects on DSMp_0-10 and DSMa_0-10 among the three

variables of climate change (Figure S5). In contrast, compared to

DGST and DGSP, DGSRad had higher influences on DSMp_10-20 and

DSMa_10-20 (Figure S6). The DGST, DGSP, and DGSRad had higher

influences on DSMp_10-20 than DSMp_0-10 (Figures S5, S6). The

overall effect of the three variables of climate change on the

DSMp_10-20 was greater than that on DSMp_0-10 (Figure S7). The

DGSP had greater exclusionary influences on DSMp_0-10

and DSMa_0-10, but the DGSRad had higher exclusionary

influences on DSMp_10-20 and DSMa_10-20 among the three

variables of climate change (Figures S7, S8). The GSNDVI and

DGSNDVI significantly affected DSMa_0-10 and DSMa_10-20 (Figure

S9). Climate change had the greatest exclusionary effects on

DSMp_0-10, DSMa_0-10, DSMp_10-20, and DSMa_10-20 than

geographical position and mean climate conditions (Figure 2).

Mean climate conditions had higher exclusionary influences on

DSMp_0-10 and DSMp_10-20 than geographical position (Figure 2).

Mean climate conditions and geographical position had the same

exclusionary effects on DSMa_0-10 and DSMa_10-20 (Figure 2).
3.2 RSM and its relationships with
environmental variables

Spatially mean values of RSM_0-10 and RSM_10-20 were 0.64 (from

0.28 to 1.45) and 0.79 (from 0.33 to 1.97), respectively (Figure 3).
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There were only 2.82% and 30.03% areas where RSM_0-10 and

RSM_10-20 values were greater than one, respectively. In contrast,

there were 97.18% and 69.97% areas where RSM_0-10 and RSM_10-20

values were lower than one, respectively. Longitude had the

strongest effects on RSM_0-10 and RSM_10-20, but latitude had the

least effects on RSM_0-10 and RSM_10-20 among the three geography

variables (Figure S10). The GSP had the strongest effects on RSM_0-

10 and RSM_10-20, but the GST had the least effects on RSM_0-10 and

RSM_10-20 among the three variables of mean climate conditions

(Figure S11). Compared to the three variables of mean climate

conditions, the GSNDVI had higher influences on RSM_0-10 and

RSM_10-20 (Figure S11). The DGSP had the strongest effects on

RSM_0-10 and RSM_10-20, but the DGSRad had the least effects on

RSM_0-10 and RSM_10-20 among the three variables of climate change

(Figure S12). The DGSNDVI also had some effects on RSM_0-10 and

RSM_10-20 (Figure S12). Longitude had the greatest exclusionary

effects on RSM_0-10 and RSM_10-20, but elevation had the least

exclusionary effects on RSM_0-10 and RSM_10-20 among the three

geography variables (Figure S13). Compared to the three variables

of mean climate conditions, the GSNDVI had the greater

exclusionary influences on RSM_0-10 and RSM_10-20 (Figure S13).

The GST had the greatest exclusionary effects on RSM_0-10 and

RSM_10-20, but the GSRad had the lowest exclusionary effects on

RSM_0-10 and RSM_10-20 among the three variables of mean climate

conditions (Figure S13). The DGST had the strongest exclusionary

influences on RSM_0-10, but the DGSP had the strongest exclusionary
B

C D

A

FIGURE 2

Relative influences of geographical position, mean climate conditions, and climate change to (A) DSMp_0–10, (B) DSMa_0–10, (C) DSMp_10–20, and
(D) DSMa_10–20.
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influences on RSM_10-20 among the three variables of climate change

(Figure S13). The DGSRad had the lowest exclusionary effects on

RSM_0-10 and RSM_10-20 among the three variables of climate change

(Figure S13). The DGSNDVI also had some exclusionary effects on

RSM_0-10 and RSM_10-20 (Figure S13). Mean climate conditions +

GSNDVI had the greatest exclusionary effects on RSM_0-10 and

RSM_10-20, but the geographical position had the lowest

exclusionary effects on RSM_0-10 and RSM_10-20 (Figure 4).
3.3 DRSM and its relationships with
environmental variables

Spatially mean values of DRSM_0-10 and DRSM_10-20 were 0.0011

(from −0.0287 to 0.0263) and 0.0013 (from −0.0590 to 0.0564),

respectively (Figure 3). There were 63.78% and 53.36% areas showing

increasing trends for DRSM_0-10 and DRSM_10-20, respectively. In

contrast, there were 36.22% and 46.64% areas showing decreasing

trends for DRSM_0-10 and DRSM_10-20, respectively. The three

geography variables and GSNDVI had some effects on DRSM_0-10

and DRSM_10-20 (Figures S14, S15). The GSP had the strongest effects

on DRSM_0-10 and DRSM_10-20, but the GST had the lowest effect on

DRSM_0-10 and DRSM_10-20 among the three variables of mean climate

conditions (Figure S15). Compared to the three variables of climate

change, the DGSNDVI had the higher influences on DRSM_0-10 and

DRSM_10-20 (Figure S16). Compared to the three variables of climate

change, the DGSNDVI had the higher exclusionary influences on

DRSM_0-10 and DRSM_10-20 (Figure S17). Climate change + DGSNDVI
had the greatest exclusionary effects on DRSM_0-10 and DRSM_10-20, but

the geographical position had the lowest exclusionary effects on

DRSM_0-10 and DRSM_10-20 (Figure 4).
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4 Discussion

4.1 Climate change

Inconsistent with the hypothesis, this study implies that climate

change resulted in soil drying trends across the entire TP grassland

region during the past 20 years. The finding is likely attributed to

the elevated evapotranspiration triggered by climate warming

offsets and even exceeds the water increase triggered by increased

precipitation (Berg et al., 2017). These findings contradict previous

studies that suggested a general increase in wetness across the TP

grasslands in recent years (Lu and Liu, 2010; Diffenbaugh and Field,

2013). Moreover, this study also showed that the proportion of soil

drying (≥43.40%) outweighed the proportion of drought trend

based on precipitation (22.57%) in the TP grassland regions

during the last 20 years. These discoveries indicated that previous

assessments of climate humidity trends based solely on

precipitation may have underestimated the extent of drying. It is

important to note that precipitation does not always effectively

support plant growth, and SM may be more associated with plant

growth (Fu et al., 2018; Rigden et al., 2020).

Climate warming, changes in precipitation, and radiation can

significantly affect SM in the TP grasslands. This finding is

consistent with previous research (Yu et al., 2019; Fu and Shen,

2022; Han et al., 2023). Notably, the exclusionary effects of radiation

change on SM emphasize the necessity of considering the impacts of

radiation change on grassland ecosystems in addition to climate

warming and decreased/increased precipitation, particularly on the

TP. These exclusionary effects of radiation change on SM also align

with some previous findings that demonstrated its notable impact

on vegetation carbon use efficiency, plant physiological
B

C D

A

FIGURE 3

Spatial distribution for (A) RSM_0-10, (B) DRSM_0-10, (C) RSM_10-20, and (D) DRSM_10-20.
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characteristics, forage nutritional quality, and storage on the TP (Fu

et al., 2016; Fu et al., 2022; Li and Fu, 2023).

This study shows that climate change had non-linear effects on

SM in the TP grassland areas. This aligns with previous studies

(Shen et al., 2015; Fu et al., 2018) and can be attributed to several

underlying mechanisms. First, it is essential to consider that SM

holding capacity is not infinite and that there exists a state of soil

saturation where the soil cannot hold more water. Although

increased precipitation can initially lead to an increase in SM, the

point of saturation will eventually be reached, and further

increases in precipitation will not result in additional gains in SM

(Shen et al., 2015; Fu et al., 2018). The level of soil saturation is

largely influenced by soil porosity, which, in turn, can be altered by

factors such as plant growth and soil organic matter decomposition.

These processes are directly or indirectly influenced by climate

change (Fu et al., 2018; Zhang et al., 2022). Second, the influences of

climate change on SM can be closely associated with the magnitude

of climate change (Xu et al., 2013), local climate conditions (Fu and

Sun, 2022), and geographical location (Zhang et al., 2021). Third,

the influences of climate change on SM depend on their relative

intensity of the influences of climate warming, increased/decreased

precipitation, and dimming/brightening on SM. However, it is

crucial to note that the influences of these factors on SM are not

simply additive or subtractive effects in nature (Yu et al., 2019; Xiao

et al., 2023).

This study shows that climate change had stronger negative

effects on DSMp_10-20 than DSMp_0-10. This is similar to previous
Frontiers in Ecology and Evolution 06
studies (Rui et al., 2011; Berg et al., 2017; Dai et al., 2022), and

several potential reasons contribute to this phenomenon. First, the

dominant climate change factors affecting SM were different

between soil depths under climate change scenarios (Figure S7).

Second, the influences of climate change on SM were related to local

water availability and warming magnitude (Rui et al., 2011; Xu et al.,

2013). Both local SM and increase in soil temperature generally

decrease with the increasing soil depth (Rui et al., 2011). Third,

plant roots interspersed in soil pores draw water from water-bearing

soil pores and generally decline with increasing soil depth (Berg

et al., 2017). Although climate warming generally stimulates plant

root growth and increases root biomass, such a boosting effect varies

with soil depth (Fu et al., 2015).

This study shows that climate change resulted in the spatial

relocation of SM across the TP grassland areas. This finding is

consistent with previous studies (Wang et al., 2021a; Fu and Sun,

2022) and can be explained by one or more of the following reasons.

First, significant spatial variations in the direction and amplitude of

climate change have directly led to the spatial relocation of air

temperature, precipitation, radiation, and wind (Huang and Fu,

2023). Moreover, because of such spatial heterogeneity of climate

change, soil temperature and vapor pressure deficit can indirectly be

relocated (Wang et al., 2021b; Han et al., 2022). Increases in wind

speed, soil temperature, and vapor pressure deficit can generally

elevate evapotranspiration, leading to a reduction in SM (Xu et al.,

2013; Fu et al., 2018). Second, different species or function groups of

plants may have diverse physiological water requirements, root
B

C D

A

FIGURE 4

Relative influences of geographical position, mean climate conditions + GSNDVI, and climate change + slope_GSNDVI to (A) RSM_0–10, (B) DRSM_0–10,
(C) RSM_10–20, and (D) DRSM_10–20.
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growth depths, and phyllosphere microbes, indicating the change in

plant growth, a-diversity, and community composition can also

affect SM (Lian et al., 2020; Huang et al., 2023). Climate change can

result in spatial relocation of plant growth and community structure

(Wang et al., 2021a; Fu and Sun, 2022; Huang and Fu, 2023).
4.2 Human activity

In line with the hypothesis, this study shows that human activity

strengthened the sensitivities of SM at 0–10 cm but weakened the

sensitivities of SM at 10–20 cm to climate change. This is similar to

previous studies (Rui et al., 2011; Zhang et al., 2020), and the

underlying mechanism for this phenomenon is likely rooted in the

fact human activity may have the capacity to either amplify or

attenuate the influences of climate change on critical factors,

including soil temperature, vapor pressure deficit, plant growth,

and community structure (Wang et al., 2012; Fu and Shen, 2016; Li

and Fu, 2023).

Furthermore, this study demonstrated that the influence of

human activity on SM was related to soil depth. This is in

agreement with previous studies (Sun et al., 2019). Several factors

may account for this relationship. First, the growth of the human

population has led to an increasing demand for groundwater, which

serves as a vital supply of SM and is more proximate to the 10–20

cm soil layer. Second, the effects of human activity on soil

temperature, bulk density, and root density are dependent on soil

depth (Rui et al., 2011; Sun et al., 2019; Lai and Kumar, 2020).

In addition to soil depth, our study also indicated that the

influence of human activity on SM varied from year to year

(Figure 3), which aligned with findings from some previous

studies (Sun et al., 2021; Zhang and Fu, 2021). This variability is

likely attributable to at least one of the following factors. First,

human activity can have cumulative influences on plant growth and

community structure, etc. (Fu and Shen, 2016; Zhao et al., 2016;

Gao and Carmel, 2020). Second, climate conditions can regulate the

influence of human activity on SM (Figure S11), and climate

conditions vary from year to year. Third, the intensity and extent

of human activity also varied from year to year.

This study shows that human activity resulted in the spatial

relocation of SM across the TP grassland ecological systems. This is

in agreement with some previous studies (Zhang et al., 2020; Zhang

and Fu, 2021). The underlying mechanisms for this phenomenon

are likely rooted in at least one of the next causes. First, both the

scope and intensity of human activity are spatiotemporal

heterogeneous (Sun et al., 2019; Zha et al., 2022). For example,

warm- and cold-season grazing may have diverse influences on SM

(Sun et al., 2021; Zhang and Fu, 2021), and they exhibit spatial

heterogeneity. Second, human activity may result in the spatial

relocation of vapor pressure deficit, soil temperature, porosity, and

compactness (Fu et al., 2012; Fu and Shen, 2016). Third, influences

of human activity on SM were related to plant growth (Figures S11,

S12), and human activity may result in spatial relocation of plant

growth (Fu et al., 2022; Zha et al., 2022; Li and Fu, 2023). Moreover,
Frontiers in Ecology and Evolution 07
human activity can also result in spatial relocation of plant a-
diversity and community composition in TP grassland ecological

systems (Sun et al., 2021; Zha et al., 2022).
5 Conclusions

This study represents the earliest investigation into the

influences of both human activity and climate change on SM at

0–10 and 10–20 cm across the entire grasslands on the TP over the

past 20 years. Our findings suggest that the impacts of human

activity and climate change on SM were dynamic, varying with soil

depth and geographical position. Notably, climate change resulted

in topsoil drying of grassland areas on the TP as a whole, a

phenomenon that previous research greatly underestimated. The

effects of climate change on soil moisture are non-linear, with a

stronger negative impact on SM at 10–20 cm than at 0–10 cm.

Importantly, when compared to climate warming and

precipitation change, radiation change exhibited significant

exclusionary effects on SM, emphasizing the need for serious

considerat ion of radiat ion change influences on SM.

Additionally, human activity can modify the sensitivity of SM to

climate change. Both human activity and climate change can

contribute to the spatial relocation of SM.
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