716 research outputs found

    Replacement Paths via Row Minima of Concise Matrices

    Full text link
    Matrix MM is {\em kk-concise} if the finite entries of each column of MM consist of kk or less intervals of identical numbers. We give an O(n+m)O(n+m)-time algorithm to compute the row minima of any O(1)O(1)-concise n×mn\times m matrix. Our algorithm yields the first O(n+m)O(n+m)-time reductions from the replacement-paths problem on an nn-node mm-edge undirected graph (respectively, directed acyclic graph) to the single-source shortest-paths problem on an O(n)O(n)-node O(m)O(m)-edge undirected graph (respectively, directed acyclic graph). That is, we prove that the replacement-paths problem is no harder than the single-source shortest-paths problem on undirected graphs and directed acyclic graphs. Moreover, our linear-time reductions lead to the first O(n+m)O(n+m)-time algorithms for the replacement-paths problem on the following classes of nn-node mm-edge graphs (1) undirected graphs in the word-RAM model of computation, (2) undirected planar graphs, (3) undirected minor-closed graphs, and (4) directed acyclic graphs.Comment: 23 pages, 1 table, 9 figures, accepted to SIAM Journal on Discrete Mathematic

    Dynamical Linear Response of TDDFT with LDA+U Functional: strongly hybridized Frenkel excitons in NiO

    Get PDF
    Within the framework of time-dependent density-functional theory (TDDFT), we derive the dynamical linear response of LDA+U functional and benchmark it on NiO, a prototypical Mott insulator. Formulated using real-space Wannier functions, our computationally inexpensive framework gives detailed insights into the formation of tightly bound Frenkel excitons with reasonable accuracy. Specifically, a strong hybridization of multiple excitons is found to significantly modify the exciton properties. Furthermore, our study exposes a significant generic limitation of adiabatic approximation in TDDFT with hybrid functionals and in existing Bethe-Salpeter-equation approaches, advocating the necessity of strongly energy-dependent kernels in future development.Comment: 5 pages, 2 figure

    Case Report: Rare percutaneous coronary intervention for “right” main bifurcation

    Get PDF
    We presented the case of a patient with non-ST-elevation myocardial infarction with coronary arteries of an anomalous origin, an interarterial course of the LMCA, a unique wide-angle “right” main bifurcation lesion, and a high SYNTAX score. Management with contemporary PCI and imaging may be an alternative to surgery

    Perturbated Gradients Updating within Unit Space for Deep Learning

    Full text link
    In deep learning, optimization plays a vital role. By focusing on image classification, this work investigates the pros and cons of the widely used optimizers, and proposes a new optimizer: Perturbated Unit Gradient Descent (PUGD) algorithm with extending normalized gradient operation in tensor within perturbation to update in unit space. Via a set of experiments and analyses, we show that PUGD is locally bounded updating, which means the updating from time to time is controlled. On the other hand, PUGD can push models to a flat minimum, where the error remains approximately constant, not only because of the nature of avoiding stationary points in gradient normalization but also by scanning sharpness in the unit ball. From a series of rigorous experiments, PUGD helps models to gain a state-of-the-art Top-1 accuracy in Tiny ImageNet and competitive performances in CIFAR- {10, 100}. We open-source our code at link: https://github.com/hanktseng131415go/PUGD

    First-principles method of propagation of tightly bound excitons: exciton band structure of LiF and verification with inelastic x-ray scattering

    Get PDF
    We propose a simple first-principles method to describe propagation of tightly bound excitons. By viewing the exciton as a composite object (an effective Frenkel exciton in Wannier orbitals), we define an exciton kinetic kernel to encapsulate the exciton propagation and decay for all binding energy. Applied to prototypical LiF, our approach produces three exciton bands, which we verified quantitatively via inelastic x-ray scattering. The proposed real-space picture is computationally inexpensive and thus enables study of the full exciton dynamics, even in the presence of surfaces and impurity scattering. It also provides intuitive understanding to facilitate practical exciton engineering in semiconductors, strongly correlated oxides, and their nanostructures.Comment: 5 pages, 4 figures. Accepted by PR

    Pandrug-Resistant Acinetobacter baumannii Causing Nosocomial Infections in a University Hospital, Taiwan

    Get PDF
    The rapid emergence (from 0% before 1998 to 6.5% in 2000) of pandrug-resistant Acinetobacter baumannii (PDRAB) was noted in a university hospital in Taiwan. To understand the epidemiology of these isolates, we studied 203 PDRAB isolates, taken from January 1999 to April 2000: 199 from 73 hospitalized patients treated at different clinical settings in the hospital and 4 from environmental sites in an intensive-care unit. Pulsed-field gel electrophoresis analysis and random amplified polymorphic DNA (RAPD) generated by arbitrarily primed polymerase chain reaction of these 203 isolates showed 10 closely related genotypes (10 clones). One (clone 5), belonging to pulsotype E and RAPD pattern 5, predominated (64 isolates, mostly from patients in intensive care). Increasing use of carbapenems and ciprofloxacin (selective pressure) as well as clonal dissemination might have contributed to the wide spread of PDRAB in this hospital

    Bacteremic pneumonia caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Appropriateness of empirical treatment matters

    Get PDF
    BackgroundClinical information about bacteremic pneumonia caused by extended-spectrum beta-lactamase (ESBL)-producing organism is limited.MethodsA retrospective study was conducted at two medical centers in Taiwan. From May 2002 to August 2010, clinical information and outcome of adults with bacteremic pneumonia caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae were analyzed. The primary outcome is the 30-day mortality.ResultsA total of 111 patients with bacteremic pneumonia caused by E. coli (37 patients, 33.3%) and K. pneumoniae (74, 66.7%) were identified. Their mean age was 69.2 years and 51.4% were male patients. Fifty-seven (51.3%) episodes were classified as hospital-acquired infections, 19 (17.1%) as health-care-associated infections, and four (3.6%) as community-acquired infections. Fifty-one (45.9%) patients received appropriate empiric antimicrobial therapy. The 30-day mortality rate was 40.5% (45 patients). In the multivariate analysis, several independent risk factors, including rapidly fatal underlying disease [odds ratio (OR), 5.75; 95% confidence interval (CI), 1.54–21.48; p = 0.009], severe sepsis (OR, 4.84; 95% CI, 1.55–15.14; p = 0.007), critical illness (OR, 4.28; 95% CI, 1.35–13.57; p = 0.013), and receipt of appropriate empirical therapy (OR, 0.19; 95% CI, 0.07–0.55; p = 0.002), were associated with 30-day mortality. The survival analysis consistently found that individuals with appropriate empiric therapy had a higher survival rate (log-rank test, p < 0.001).ConclusionESBL-producing bacteremic pneumonia, especially health-care-associated infections, often occurred in adults with comorbidities. Appropriate empirical therapy was associated with a favorable outcome

    Apamin-Sensitive Calcium-Activated Potassium Currents in Rabbit Ventricles with Chronic Myocardial Infarction

    Get PDF
    Introduction Apamin-sensitive small-conductance calcium-activated potassium current (IKAS) is increased in heart failure. It is unknown if myocardial infarction (MI) is also associated with an increase of IKAS. Methods and Results We performed Langendorff perfusion and optical mapping in 6 normal hearts and 10 hearts with chronic (5 weeks) MI. An additional 6 normal and 10 MI hearts were used for patch clamp studies. The infarct size was 25% [95% confidence interval, 20 to 31] and the left ventricular ejection fraction was 0.5 [0.46 to 0.54]. The rabbits did not have symptoms of heart failure. The action potential duration measured to 80% repolarization (APD80) in the peri-infarct zone (PZ) was150 [142 to 159] ms, significantly (p=0.01) shorter than in the normal ventricles (158 to 177] ms). The intracellular Ca transient duration was also shorter in the PZ (148 [139 to 157] ms) than in normal ventricles (168 [157 to 180] ms; P=0.017). Apamin prolonged the APD80 in PZ by 9.8 [5.5 to 14.1] %, which is greater than in normal ventricles (2.8 [1.3 to 4.3] %, p=0.006). Significant shortening of APD80 was observed at the cessation of rapid pacing in MI but not in normal ventricles. Apamin prevented postpacing APD80 shortening. Patch clamp studies showed that IKAS was significantly higher in the PZ cells (2.51 [1.55 to 3.47] pA/pF, N=17) than in the normal cells (1.08 [0.36 to 1.80] pA/pF, N=15, p=0.019). Conclusion We conclude that IKAS is increased in MI ventricles and contributes significantly to ventricular repolarization especially during tachycardia
    corecore