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Abstract

Introduction—Apamin-sensitive small-conductance calcium-activated potassium current (IKAS) 

is increased in heart failure. It is unknown if myocardial infarction (MI) is also associated with an 

increase of IKAS.

Methods and Results—We performed Langendorff perfusion and optical mapping in 6 normal 

hearts and 10 hearts with chronic (5 weeks) MI. An additional 6 normal and 10 MI hearts were 

used for patch clamp studies. The infarct size was 25% [95% confidence interval, 20 to 31] and 

the left ventricular ejection fraction was 0.5 [0.46 to 0.54]. The rabbits did not have symptoms of 

heart failure. The action potential duration measured to 80% repolarization (APD80) in the peri-

infarct zone (PZ) was150 [142 to 159] ms, significantly (p=0.01) shorter than in the normal 

ventricles (158 to 177] ms). The intracellular Ca transient duration was also shorter in the PZ (148 

[139 to 157] ms) than in normal ventricles (168 [157 to 180] ms; P=0.017). Apamin prolonged the 

APD80 in PZ by 9.8 [5.5 to 14.1] %, which is greater than in normal ventricles (2.8 [1.3 to 4.3] %, 

p=0.006). Significant shortening of APD80 was observed at the cessation of rapid pacing in MI but 

not in normal ventricles. Apamin prevented postpacing APD80 shortening. Patch clamp studies 

showed that IKAS was significantly higher in the PZ cells (2.51 [1.55 to 3.47] pA/pF, N=17) than 

in the normal cells (1.08 [0.36 to 1.80] pA/pF, N=15, p=0.019).

Conclusion—We conclude that IKAS is increased in MI ventricles and contributes significantly 

to ventricular repolarization especially during tachycardia.
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Small conductance calcium activated potassium (SK) currents are abundantly present in the 

neurons1, 2 and in atrial cardiomyocytes.3–6 However, little or no apamin-sensitive K 

currents are present in normal ventricles.3, 7, 8 These channels are activated by increases in 

intracellular Ca2+ (Cai) and are blocked by apamin.2 In the nervous system, activation of 

apamin-sensitive K+ current (IKAS) is responsible for slow afterhyperpolarizations, which 

help terminate neuronal action potential bursts.9 Similar to rapid neuronal discharges, 

ventricular fibrillation (VF) also causes Cai accumulation that may persist minutes after 

successful defibrillation.10 Cai accumulation and acute postshock action potential duration 

(APD) shortening facilitated the development of late phase 3 early afterdepolarization 

(EAD)11 (also known as Cai transient triggered firing)12, 13 and electrical storm in that 

model. The acute postshock APD shortening in failing ventricles was shown to be due to 

IKAS activation.8 A more recent study by Chang et al14 showed that both the IKAS and the 

SK protein are increased in the native hearts of transplant recipients, and that apamin 

significantly prolongs the APD in failing human ventricular myocytes but not in normal 

control ventricular myocytes. These findings suggest that IKAS is important in ventricular 

repolarization and arrhythmogenesis in failing ventricles by shortening APD during Cai 

accumulation. However, the ability to accelerate the repolarization may also be 

antiarrhythmic. The redundancy in the complexities of myocardial repolarization 

(repolarization reserve)15 is important in maintaining normal and orderly ventricular 

repolarization, while reduced repolarization reserve underlies the mechanisms of 

afterdepolarization and ventricular arrhythmias in congenital or acquired long-QT 

syndromes.16 Myocardial infarction (MI) is followed by significant arrhythmogenic ion-

channel remodeling including downregulation of multiple K currents in the peri-infarct zone 

as well as in the subendocardial Purkinje fibers.17 These changes were thought to underlie 

the mechanisms of afterdepolarizations and ventricular arrhythmias in MI ventricles. While 

K current remodeling after MI has been extensively studied, none of these studies included 

an evaluation of IKAS after MI. If there is an increased IKAS, it would counterbalance the 

downregulation of other K currents, hence maintaining repolarization reserve. Inhibition of 

IKAS by apamin would prolong the APD and reduce the repolarization reserve. The purpose 

of the present study was to perform optical mapping studies and patch clamp studies to test 

the hypothesis that IKAS is increased in rabbit ventricles with chronic MI and contributes 

significantly to ventricular repolarization in MI ventricles.

Methods

This study protocol was approved by the Institutional Animal Care and Use Committee of 

Indiana University School of Medicine and the Methodist Research Institute, and conforms 

to the Guide for the Care and Use of Laboratory Animals. New Zealand White female adult 

rabbits (weight 3.5–4 Kg) were used in this study (N=32). Among them, coronary artery was 

ligated in 20 rabbits to induce myocardial infarction (MI) and the remaining 12 rabbits were 
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used as normal control. MI hearts were either Langendorff perfused for optical mapping 

studies (N=10) or were used for patch clamp studies (N=10). The control hearts were either 

Langendorff perfused for optical mapping studies (N=6) or used for patch clamp studies 

(N=6).

Coronary artery ligation

MI was created with methods reported elsewhere.18 Left lateral thoracotomy was performed 

under isoflurane inhalation general anesthesia. The obtuse marginal branch of the left 

circumflex coronary artery or the diagonal branch of the left anterior descending coronary 

artery was ligated halfway between the atrioventricular groove and the cardiac apex. The 

limb lead electrocardiogram (ECG) was continuously monitored. MI was documented by 

acute ST segment elevation on ECG, purple-red discoloration and decreased wall motion 

distal to ligation. Left ventricular (LV) function, dimension, and mass of LV were assessed 

by echocardiography.

Optical Mapping

Details of optical mapping methods have been reported elsewhere.19 Briefly, the rabbits 

were anesthetized with sodium pentobarbital (50 mg/kg). These hearts were rapidly excised 

and Langendorff perfused at 25 to 30 mL/min with oxygenated Tyrode solution (in mmol/L: 

NaCl 125, KCl 4.5, NaHCO3 24, NaH2PO4 1.8, CaCl2 1.8, MgCl2 0.5, and glucose 5.5) 

with a pH of 7.40. The hearts were stained with Rhod-2 AM (1.48 μmol/L) for Cai mapping 

and with RH237 for membrane potential (Vm) mapping. The double-stained hearts were 

excited with laser light at 532 nm. The fluorescence was collected and recorded with dual 

Complementary metal–oxide–semiconductor (CMOS) cameras (BrainVision, Tokyo, Japan) 

at 2 ms/frame and 100x100 pixels with a spatial resolution of 0.35x0.35 mm2 per pixel. The 

fluorescence obtained through a common lens was separated with a dichroic mirror (650 nm 

cutoff wavelength), and directed to the respective camera with additional filtering (715 nm 

longpass for Vm and 580±20 nm for Cai). Optical signals were processed with both spatial 

(3X3 pixels Gaussian filter) and temporal (3 frames moving average) filtering. The hearts 

were immobilized with 20 μmol/L blebbistatin (Tocris, Ellisville, MO) during optical 

mapping.

Experiment Protocol

The rabbits were anesthetized 5.0 [95% CI, 4.2 to 5.9] weeks after MI. After 

echocardiography, the hearts were quickly removed and Langendorff perfused for optical 

mapping. We used 2 pacing protocols of rapid pacing during the study. Rapid pacing in non-

infarcted myocardium increases Cai,20 which activates IKAS and shortens the action 

potential duration (APD) after pacing.8 In protocol I, we first measured APD to 80% 

repolarization (APD80) at pacing cycle length (PCL) of 300 ms. We then performed S1–S2 

protocol with 30 s of S1 followed by an S2 with the S1–S2 interval of 300 ms. The S1 PCL 

was then progressively shortened until loss of 1:1 capture. The S1–S2 coupling interval was 

fixed at 300 ms to minimize APD variations due to different duration of postpacing pauses. 

In protocol II, we paced S1 at fixed PCL of 200 ms but varied the number of paced beats 

(50, 100, 200, 400 beats). An S2 was then given after the last S1, with S1–S2 interval fixed 

at 300 ms. Apamin (100 nmol/L) was added to the perfusate for 30 minutes before the same 
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pacing protocols were repeated. To determine whether ATP-sensitive potassium current 

(IKATP) activation was responsible for the APD shortening in the infarct ventricles, 

glibenclamide (10 μmol/L) was given before and after application of apamin in 3 infarcted 

ventricles.

Infarct Size Measurement

At the end of the study, the hearts (N=10) were harvested, cut horizontally into six sections 

and immersed in 1% triphenyl tetrazolium chloride (TTC) solution for 10 minutes. The 

surviving myocardium was stained brick red while infarcted was stained white.18 The 

percentage of MI was assessed as the ratio between the white area and total area of LV.

Rabbit Ventricular Myocyte Isolation and Patch Clamp Study

Ventricular cardiomyocytes were isolated enzymatically from left ventricles of failing rabbit 

hearts and whole-cell configuration of patch clamp techniques were conducted to acquire 

potassium currents, as previously described.8 Briefly, the hearts were rapidly excised and 

Langendorff perfused for 5 minutes with Tyrode’s solution followed by perfusion with a 

buffer containing (in mM): NaCl, 125; MgSO4, 1.18; KCl, 4.75; KH2PO4, 1.2; HEPES, 10; 

bovine serum albumin (BSA), 1 g/L; glucose, 10; taurine, 58.5; creatine, 24.9; EGTA, 0.02 

(pH 7.4 with NaOH). This was followed by 15~20 minute perfusion with the same buffer 

containing 150–200 U/ml collagenase type II (Worthington, Lakewood, NJ). The hearts 

were removed from the perfusion apparatus; the left ventricles were cut into small pieces 

and dissected mechanically to obtain cardiomyocytes. Whole-cell configuration of patch-

clamp technique was used to record IKAS. Experiments were carried out at 36°C. Step-pulse 

and ramp-pulse voltages were generated with Axopatch 200B amplifier using pCLAMP-9 

software (Molecular Device, Sunnyvale, CA). The data were filtered with a built-in four-

pole Bessel low-pass filter (cut-off frequency: 2 kHz), and then digitized at 5 kHz. 

Extracellular solution contained (in mM): N-methylglucamine (NMG), 140; KCl, 4; MgCl2, 

1; glucose, 5; and HEPES, 10 (pH 7.4 with HCl). Intracellular solution contained (in mM): 

potassium gluconate, 144; MgCl2, 1.15; EGTA, 1; and HEPES, 10 (pH 7.25 with KOH). To 

study intracellular calcium dependency of IKAS, various combinations of CaCl2 and 1 mM 

ethylene glycol tetraacetic acid (EGTA) were used to yield different free calcium 

concentrations.21 An online calculator (http://www.stanford.edu/~cpatton/CaMgATPEGTA-

TS.htm) was used to calculate total CaCl2 required to generate the desired free calcium 

concentrations. We used only one free calcium concentration for each pipette/cell. IKAS was 

analyzed with Clampfit (Axon Instruments, Sunnyvale, CA), Origin 8.1 (OriginLab, 

Northampton, MA), and Igor software (WaveMetrics, Lake Oswego, OR).

Western Blotting

Western blotting was performed in a separate group of 5 normal control and 5 MI hearts that 

were not used for either mapping or patch clamp studies.100 mg tissues were homogenized 

by POLY TRON in 1 ml RIPA buffer with protease inhibitor (50 mM Tris pH 8.4, 150 mM 

NaCl, 1% NP40, 0.5% sodium deoxycholate 1 mM PMSF, 2 μg/ml leupeptin, 1 μg/ml 

pepstatin A, and 5 μg/ml aprotinin). Homogenates were incubated on ice for 30 minutes and 

then centrifuged at 14,000 rpm for 15min. 20μg of supernatants were subjected to 

electrophoresis using Bio-Rad mini gel system. The separate proteins were transferred to 
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PVDF (Millipore). The membrane was bathed in TBS with 5% milk for one hour, and 

probed with either anti-KCNN2 antibody (Abcam, ab83733, 1:2500) or anti-GAPDH 

antibody (PIERCE, MA1-22670, 1:2500) overnight. After the interaction with primary 

antibody, the membrane was incubated with HRP-conjugated anti-rabbit or anti-mouse 

secondary antibodies (sigma, 1:5000) for 30 minutes. Finally, Luminata Crescendo HRP 

substrate (Millipore, WBLUR100) was added onto the membrane according to 

manufacturer’s instruction.

Data Analysis

Optical APD80 and Cai transient duration (CaiTD80) were measured at 80% repolarization. 

Two-dimensional APD80 and CaiTD80 maps were constructed to study the spatial 

distribution of APD80 and CaiTD80 on epicardial surfaces of the heart. The APD80 and 

CaiTD80 were measured by computerized methods using all available pixels on the 

ventricles, excluding the atrial signals and the pixel at the edge of the ventricle. We also 

analyzed the relationship between preceding diastolic interval and APD80 of S1 (300 ms) at 

each pacing cycle. Kd data were presented as mean and standard deviation. Continuous 

variables were expressed as mean and 95% confidence interval [CI].22 Paired Student’s t-

tests were used for comparison before and after apamin and glibenclamide. Independent 

two-sample T test was used to compare group means. Analyses of variance (ANOVA) with 

posthoc tests adjusted for multiple comparisons were used for comparison among 3 groups. 

All tests were performed at a 2-tailed significance level of P≤ 0.05. The statistics were 

computed with PASW Statistics 19 (IBM, Chicago, IL).

Results

Characteristics of MI

All rabbits developed acute ST segment elevation after coronary ligation (Figure 1A). After 

the heart was removed, transmural infarct (whitish scar) was visible distal to the ligation 

(Figure 1B). Figure 1C shows the triphenyl tetrazolium chloride (TTC) staining of the 

infarct ventricle, with brick red color identifying surviving myocardium and white the 

infarct myocardium. The estimated infarct size averaged 25 [95% CI, 20 to 31] % of the LV. 

None of the rabbits developed clinical signs of overt heart failure such as appetite loss, 

tachypnea, lethargy, ascites or pleural effusion. All MI rabbits had LV ejection fractions 

(EF) exceeding 45%, averaging 50 [95% CI, 46 to 54] %, which was significantly lower 

than baseline (62 [95% CI, 58 to 67] %, P=0.002). LV end-diastolic dimension, LV end-

systolic dimension, and LV mass in MI rabbits were all significantly increased from baseline 

(baseline versus post-MI were 1.6 [95% CI, 1.5 to 1.7] cm versus 2.0 [95% CI, 1.9 to 2.2] 

cm, 1.1 [95% CI, 1.0 to 1.2] cm versus 1.6 [95% CI, 1.4 to 1.7] cm, 28 [95% CI, 25 to 30] g 

versus 37 [95% CI, 32 to 42] g, respectively, P<0.001 for all).

Baseline APD and CaiTD

Figure 2 shows APD and CaiTD in the normal and MI ventricles. The optical signals in the 

infarct zone (IZ) were too weak to be analyzed. The APD80 and CaiTD80 in the peri-infarct 

zone (PZ) and remote zone (RZ) were both shorter than the corresponding sites in the 

normal ventricles. Figure 2B shows APD80 at 300 ms PCL recorded from the site marked by 
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an asterisk in APD80 map in Figure 2A. APD80 in the PZ and RZ of the MI ventricles was 

significantly shorter than in the normal ventricles (146 [95% CI, 138 to 159] ms, 152 [95% 

CI, 144 to 161] ms, versus 167 [95% CI, 158 to 177] ms, respectively, P=0.002 between 

normal and PZ, P=0.024 between normal and RZ). There were no significant differences in 

APD80 between PZ and RZ (P=0.25). The CaiTD80 was 148 [95% CI, 139 to 157] ms for 

PZ, 152 [95% CI, 143 to 161] ms for RZ, and 168 [95% CI, 157 to 180] ms for normal 

ventricles (P=0.017 between normal and PZ, P=0.024 between normal and RZ; Figure 2C).

Effects of Apamin on Baseline APD

Figure 3A shows APD80 maps before and after apamin administration in normal and MI 

ventricles. Figure 3B shows corresponding optical tracings of action potentials from a single 

representative pixel from the site marked with asterisk in Figure 3A. While both APD80 

maps and the optical tracings showed that apamin prolonged APD80 in normal and MI 

ventricles, the degree of prolongation was greater in MI than in normal ventricles. 

Furthermore, apamin eliminated the differences of APD80 between normal and MI 

ventricles. Figure 3C, left panel, shows that APD80 prolongation after apamin was greater in 

PZ (9.8 [95% CI, 5.5 to 14.1] %) and RZ (8.1 [95% CI, 4.4 to 11.7] %) than in normal 

ventricles (2.8 [95% CI, 1.3 to 4.3] %) (p=0.006 between normal and PZ, P=0.010 between 

normal and RZ). There was no difference in the degree of APD80 prolongation between PZ 

and RZ (P=0.469). The right panel shows that apamin significantly increased the CaiTD80 in 

normal and the MI-RZ but not MI-PZ.

Effects of Apamin on APD After the Cessation of Rapid Pacing

Progressively rapid pacing led to transiently increased Cai. We gave a S2 stimulus 300 ms 

after the last S1 and measured ΔAPD80 as the difference between APD80 of S2 and baseline 

APD80 (i.e., APD80 measured at 300 ms PCL). Figure 4 shows the effects of PCL on 

ΔAPD80. Figure 4A shows examples of 300 ms PCL and 150 ms PCL in normal ventricles. 

The 150 ms PCL was the shortest PCL that can capture 1:1. Apamin did not increase 

ΔAPD80 in normal ventricles, indicating no IKAS activation during pacing-induced Cai 

accumulation. However, apamin significantly increased ΔAPD80 in both the MI-RZ (Figure 

4B) and MI-PZ (Figure 4C) of MI ventricles, especially at the shortest PCL that resulted in 

1:1 capture. Figures 4D–F show the results of 3 different PCLs in normal ventricles, MI-RZ 

and MI-PZ, respectively. The ΔAPD80 progressively increased as the PCL shortened, 

indicating IKAS activation is progressively more important during pacing-induced Cai 

accumulation. Online Supplement Figure 1 shows the ΔAPD80 as a function of the number 

of paced beats, while the PCL was fixed at 200 ms. Apamin significantly increased ΔAPD80 

in both the MI-RZ (Panel B) and MI-PZ (Panel C), but not in normal ventricles (Panel A). 

Online Supplement Figure 1 D–F show the results in normal ventricles, MI-RZ and MI-PZ, 

respectively. The ΔAPD80 progressively increased as the number of paced beats increased, 

suggesting progressively increased importance of IKAS in ventricular repolarization during 

tachycardia.

Effects of Glibenclamide on APD

We used glibenclamide (10 μmol/L) to block IKATP, followed by apamin to block IKAS 

(N=3), or vice versa (N=3). Figure 5A and 5B show the APD80 maps. Among them, Panel A 
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shows results of adding glibenclamide before adding apamin. Glibenclamide did not 

significantly prolong APD80 in these rabbits. However, after apamin administration, there 

was a significant global increase of APD80 (Figure 5C). Figure 5B shows adding apamin 

before glibenclamide. Apamin administration prolonged APD80 at PZ and RZ. There was no 

further lengthening of APD80 after glibenclamide (Figure 5D).

Effects of Apamin on Conduction Velocity

The conduction velocity was measured by analyzing the wavefront propagation at 300 ms 

PCL. The difference of earliest and latest activation was used to determine the conduction 

time. The ratio between the distance traveled and the conduction time is the conduction 

velocity. We found that apamin significantly reduced the conduction time in MI ventricles 

but not in normal ventricles.

IKAS in MI Ventricles Determined With Patch Clamp Techniques

Figure 6A shows representative current traces obtained with a step-pulse protocol (300 ms 

pulse duration; holding potential, −70 mV; see inset) in the absence and presence of 100 

nmol/L apamin in the bath solution. Mean IKAS density (determined as the apamin-sensitive 

difference current) was significantly larger in PZ of MI than in normal ventricular epicardial 

myocytes (IKAS density at 0 mV with an intrapipette free [Ca2+] of 1000 nmol/L; 2.51 [95% 

CI, 1.55 to 3.47] pA/pF, n= 17 cells from 10 MI rabbits, versus 1.08 [95% CI, 0.36 to 1.80] 

pA/pF, n= 15 cells from 6 normal rabbits, P= 0.019; Figure 6B). A linear mixed-effects 

model was fitted to the I–V curve data (Figure 6B) with a distinct cubic curve fitted to each 

of the three groups. There is a significant difference between Peri-MI and control, and 

between Peri-MI and Remote (both with p-value<0.001). There is no evidence of difference 

in the curve between control and Remote (p=0.55). Figure 6C shows the IKAS current 

density at 0 mV recorded from epicardial cells of normal, RZ-MI and PZ-MI. There was 

higher IKAS density in MI-PZ than normal cells. To determine the mechanism underlying 

increased IKAS, Cai-dependence of IKAS was studied in epicardial cells using pipette 

solutions containing different intracellular free [Ca2+]. Figure 6D shows the relationship 

between IKAS density and Cai. A significant difference was present at high Cai (1000 nM), 

but not at lower Cai. These results are consistent increased sensitivity of IKAS to cytosolic 

Ca2+ in MI ventricles.

Western Blotting Analyses

The results are presented in the Online Supplement Figure 2. Although there was a trend of 

increased ratio between SK2 protein and the house keeping gene Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) protein in PZ (1.194 [95% CI, 0.522 to 1.871]) and RZ 

(1.162 [95% CI, 0.334 to 1.990] versus control (0.784 [95% CI, 0.028 to 1.540]), the 

difference was not statistically significant (p=0.913).

Discussion

We found in the present study that chronic MI is associated with a significantly increased 

IKAS density and altered IKAS sensitivity to Cai. IKAS contributes significantly to ventricular 

repolarization in MI ventricles.
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Apamin as a Selective SK Channel Blocker

Apamin is a highly selective SK channel blocker.232 It blocks SK but no other classes of K 

channels.24 Even among the SK channels, apamin only selectively blocks SK2 and SK3. It 

does not block SK1 at 100 nM,24 the concentration used in the present study. Due to its 

subtype selectivity, we have used the term IKAS rather than IK(Ca) to describe the K current 

that is blocked by apamin. The only other current known to be blocked by apamin is the 

fetal L-type Ca2+ current.25 Blocking that inward current should not prolong the APD as 

observed in the present study. The I–V curve of IKAS in this study and in the report by Xu et 

al3 showed inward rectification, which is the intrinsic properties of SK channels independent 

of intracellular blockers.26 However, we do not have our own data to rule out the possibility 

that apamin inhibit other ionic currents in cardiac cells. Even if present, the importance of 

that ionic current in cardiac repolarization is probably small in normal ventricles, as the 

APD did not lengthen significantly in normal ventricles after apamin administration.8 Most 

of the known cardiac K currents (including the delayed rectifier K currents) are 

downregulated in HF and MI.27 Therefore, the apamin-induced APD prolongation in failing 

ventricles8 and in MI ventricles cannot be explained by blocking the already downregulated 

K currents. We propose that apamin has sufficient specificity to support the conclusion of 

the study.

IKAS and Ventricular APD in Chronic MI

In rabbit model, chronic MI is associated with time-dependent shortening of APD. The 

maximal shortening occurs within 30 minutes after MI, and gradually recovers to near 

normal values 60 days after MI.28 The MI-induced APD changes are highly heterogeneous 

and are usually attributed to the non-uniform distribution and remodeling of ionic currents.17 

However, none of the previous studies reported that MI results in an increased IKAS. In the 

present study, we documented that IKAS is increased in the rabbit model of chronic MI. 

Because rapid pacing increases Cai in non-infarcted myocardium,20 the effects of apamin on 

APD is most pronounced during rapid pacing. In addition to blocking SK currents, apamin is 

also known to block ICa,L.25 However, ICa,L blocking effects of apamin should shorten, 

rather than lengthen, the APD.

The causes of APD change after MI are complex and likely to involve remodeling of many 

ion channels and Ca cycling elements. Some of these changes are likely to prolong and 

others to shorten APD. Our results with apamin suggest the SK channel current is part of the 

mix of remodeling of outward currents tending to shorten APD, and if blocked, restores 

APD back to a similar value as in normal tissue. These findings do not imply that the 

enhancement of the SK current is the only change in the surviving myocardium after MI; 

rather, the other changes tend to balance each other out as far as APD is concerned, and 

IKAS merely tips the balance toward APD shortening.

IKAS in MI and HF

Chua et al8 previously reported increased IKAS in a rabbit model of pacing-induced HF. That 

finding was independently confirmed in a canine model of pacing-induced HF.29 

Furthermore, the ventricles from failing native hearts of human transplant recipients showed 

both increased IKAS and SK2 protein levels as compared with non-failing control 
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ventricles.14 In the present study, the size of the MI is insufficiently large to cause 

significant HF symptoms. However, APD prolonged significantly after apamin 

administration. These findings suggest that IKAS contributes significantly to the 

repolarization reserve of both MI and HF. In both models, conditions associated with Cai 

accumulation (prolonged rapid pacing) further magnified the APD-prolonging effects of 

apamin. Both models showed increased IKAS sensitivity to Cai. The mechanisms by which 

diseases cause significant increased IKAS sensitivity to Cai remain incompletely understood.

IKAS and Cardiac Arrhythmias

Because rapid pacing and VF induce Cai accumulation,10 there is increased importance of 

Cai dynamics30 and IKAS
8 in arrhythmogenesis during tachycardia and immediately after 

successful defibrillation, when Cai handling continues to be abnormal.10 Activation of IKAS 

in failing ventricles during rapid pacing steepens the APD restitution curve31 and shortens 

postshock APD, leading to recurrent VF.8, 32 Apamin flattens the restitution curve and 

prolongs postshock APD; both actions help suppresses VF recurrences. We showed in the 

present study that there is significant IKAS in ventricles with chronic MI, especially during 

rapid pacing. While we did not observe spontaneous recurrences of VF in these non-failing 

ventricles, the increased IKAS may still contribute to the ventricular arrhythmogenesis 

through its effects on APD response during rapid pacing and tachycardia. An additional 

proarrhythmic mechanism of IKAS is the heterogeneous distribution of this ionic current. 

The cells in the midmyocardial layer have smaller IKAS than cells in the epicardium.8, 14 The 

heterogeneous distribution of this repolarizing current in failing and infarcted ventricles may 

contribute to arrhythmogenesis, especially when the ventricles are exposed to drugs that 

block this ion current.

Clinical Implications

K currents are vital for cardiac repolarization. Downregulation of the K currents in HF and 

MI is thought to contribute significantly to reduced repolarization reserve that promotes 

afterdepolarizations, ventricular arrhythmias and sudden death,16 and the compensatory up-

regulation of IKAS in HF and MI can help to preserve ventricular repolarization reserve. 

However, the antiarrhythmic effect may be offset by excessive IKAS up-regulation that 

shortens the APD under conditions of elevated Cai, leading to increased late phase 3 EAD 

and recurrent VF. Therefore, similar to other K channel blockers, our data suggest that IKAS 

blockers can be both proarrhythmic and antiarrhythmic depending on the clinical situations 

and disease status. A second clinical implication is that, because IKAS is increased in 

diseased ventricles, IKAS blockers should not be considered as atrial selective antiarrhythmic 

agents in these ventricles.

Study limitation

The number of animals and cells studied is small. We tested only a single time point after 

MI. Whether or not IKAS is increased at other time points after MI remains unknown. 

Because of the poor optical signals over the infarcted or ischemic regions, we were not able 

to study the effects of apamin on APD over the epicardial border zone (i.e., several layers of 

muscle fibers that survive on the epicardium over infarcted myocardium).33 Whether or not 

there is IKAS upregulation over epicardial border zone cells remains unclear. We used 
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commercially available antibody for the Western blot analyses of SK2 proteins. The 

sensitivity and specificity of those antibodies against SK2 protein in rabbit ventricles are 

unclear. While rapid pacing increases Cai,20 it may also have effects on restitution of other 

channels, redox changes and having metabolic effects. Whether or not these additional 

factors contributed to IKAS activation during rapid rates remain unclear.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Creation of chronic MI. A, After ligation of coronary artery, definite ST segment elevation 

(asterisks) was seen on the pseudo ECG (pECG). B, Photography of the anterior view of the 

infarcted heart showed white fibrotic area at apex of left ventricle (LV). C, The triphenyl 

tetrazolium chloride staining of the infarcted heart showed brisk red for surviving 

myocardium and white for infarcted myocardium. LAD, left anterior descending coronary 

artery; RV, right ventricle.
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Figure 2. 
Action potential duration (APD) and intracellular Ca transient duration (CaiTD) in normal 

and infarcted ventricles. Measurements were made with PCL of 300 ms in 6 normal and 7 

infarct ventricles. A, APD80 map and CaiTD80 map obtained from normal and infarcted 

ventricles. We divided MI ventricle to three regions. The infarct zone (IZ) has the region 

distal to coronary ligation. The peri-infarct zone (PZ) was defined as the region within one-

third of the distance from the edge of the infarct. The remaining two-thirds of the non-

infarcted region was the remote zone (RZ). B, Black and red lines indicate optical tracings 

of Vm and intracellular calcium (Cai), respectively. The optical tracings were recorded from 

the site labeled by an asterisk in the APD80 map and CaiTD80 map in A. C, Average of 

APD80 and CaiTD80 at fixed PCL of 300 ms in normal (N=6) and RZ (N=7) and PZ (N=7). 

Boxplots were used to compare the median and the range of the data associated with normal 

ventricles, MI-RZ and MI-PZ. APD80 and CaiTD80 indicate APD and Cai transient duration, 

respectively, measured at 80% repolarization.
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Figure 3. 
Effects of apamin on APD80 and CaiTD80 in normal and infarct ventricles. A, Typical 

APD80 maps before and after apamin in normal and infarct ventricles. B, Black and blue 

lines indicated the optical Vm tracing before and after application of apamin, respectively. 

The tracings were obtained from the site labeled by an asterisk in A. C, Magnitude of APD80 

(left panel) and CaiTD80 (right panel) prolongation before and after apamin in 6 normal and 

7 infarct ventricles. Paired t tests show significant prolongation of CaiTD80 before (control) 

and after adding apamin.
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Figure 4. 
Effects of apamin on action potential duration (APD) at the cessation of rapid pacing. In A 

through C, the first and third rows show action potential at PCL of 300 ms followed by S2 

with S1–S2 of 300 ms. The second and fourth rows show APs during rapid pacing followed 

by a postpacing (S2) beat at 300 ms coupling interval. The difference between APD80 of S2 

and that of S1 at 300 ms PCL is the ΔAPD80. The same pacing protocol was performed 

before and after apamin. D and F show effect of apamin on ΔAPD80 of each pacing cycle 

length in normal, MI-RZ and MI-PZ, respectively. 1:1 indicates the shortest PCL associated 

with 1:1 capture. The average shortest PCL associated with 1:1 pacing in normal and MI 

ventricles were 153.3 [95% CI, 144.8 to 161.9] ms and 161.4 [95% CI, 150.2 to 172.7] ms, 

respectively (P=0.194). The asterisk indicates p<0.05 between control and apamin at each 

PCL.

Lee et al. Page 16

J Cardiovasc Electrophysiol. Author manuscript; available in PMC 2014 October 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Effects of glibenclamide given on action potential duration (APD80). A shows the APD80 

distribution at baseline control, after adding glibenclamide (middle panel) and finally after 

adding apamin (bottom panel) in a typical example. C shows the box plot of the values 

throughout the mapped region. Note that there were no significant differences of APD80 

between control and glibenclamide, but APD80 lengthened significantly after apamin was 

added. B shows the APD80 distribution at baseline, after apamin (middle panel) and after 

both apamin and glibenclamide (bottom panel). D shows the box plot of the values 

throughout the mapped region. Note that the APD80 prolonged significantly after adding 

apamin, but no further prolongation was noted when glibenclamide was added. The 

infarcted or ischemic epicardial areas were marked by blue color. They were excluded from 

the analyses.
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Figure 6. 
Patch clamp studies of apamin-sensitive K+ currents (IKAS) in chronic MI. A, 

Representative K+ current traces obtained from normal, MI peri-infarct zone (MI-PZ) and 

MI remote zone (MI-RZ) ventricular myocytes. Voltage-pulse protocol is shown in the inset. 

“Baseline” shows current traces in the absence of apamin (Ibaseline); Apamin indicates the 

use of 100 nmol/L apamin in bath solution (Iapamin); “Difference” shows IKAS calculated as 

Ibaseline - Iapamin. B, I–V curve of IKAS from MI-PZ (red), MI-RZ (blue) and normal (black) 

ventricular cells. C, IKAS density at 0 mV recorded from epicardial cells of normal, RZ-MI 

and PZ-MI. There was higher IKAS density in MI-PZ than that of MI-RZ and normal cells. 

D, IKAS and Cai concentration. Asterisk indicates that the IKAS is significantly (p=0.02) 

higher in the MI-PZ than MI-RZ and normal control at 1,000 nM Cai concentration.
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