37,462 research outputs found

    Effect of surface asperity on elastohydrodynamic lubrication

    Get PDF
    The important aspects of elastohydrodynamic lubrication, with a single, one-dimensional asperity, have been found by solving numerically the coupled transient Reynolds equation and the elasticity equation. Even though the assumption of a single asperity is highly ideal, this study sheds some light on the effect of surface roughness on elastohydrodynamic lubrication. The results show that the film pressure tends to increase more than the steady state pressure, and in particular, the increase in pressure reaches a maximum as the asperity approaches the inlet of the contact region. The asperity height and the pressure increase above the steady state pressure are closely related to each other; the higher the asperity height, the larger the pressure increase. In the pure rolling case, it has been found that a local pressure peak is not developed. However, in the cases of sliding and rolling, a small, local pressure peak is developed on the pressure profile when the asperity moves into the contact region. In general, the overall film thickness profile increases with increasing asperity height, but is not significantly affected by the asperity width. Moreover, the slope of the overall film thickness profile for the transient cases is much greater than the steady state profile, which is approximately constant across the contact width. The increase in the center film thickness also depends upon the width and height of the asperity

    On the Origin of Pluto's Small Satellites by Resonant Transport

    Get PDF
    The orbits of Pluto's four small satellites (Styx, Nix, Kerberos, and Hydra) are nearly circular and coplanar with the orbit of the large satellite Charon, with orbital periods nearly in the ratios 3:1, 4:1, 5:1, and 6:1 with Charon's orbital period. These properties suggest that the small satellites were created during the same impact event that placed Charon in orbit and had been pushed to their current positions by being locked in mean-motion resonances with Charon as Charon's orbit was expanded by tidal interactions with Pluto. Using the Pluto-Charon tidal evolution models developed by Cheng et al. (2014), we show that stable capture and transport of a test particle in multiple resonances at the same mean-motion commensurability is possible at the 5:1, 6:1, and 7:1 commensurabilities, if Pluto's zonal harmonic J2P=0J_{2P} = 0. However, the test particle has significant orbital eccentricity at the end of the tidal evolution of Pluto-Charon in almost all cases, and there are no stable captures and transports at the 3:1 and 4:1 commensurabilities. Furthermore, a non-zero hydrostatic value of J2PJ_{2P} destroys the conditions necessary for multiple resonance migration. Simulations with finite but minimal masses of Nix and Hydra also fail to yield any survivors. We conclude that the placing of the small satellites at their current orbital positions by resonant transport is extremely unlikely.Comment: 22 pages, including 7 figures; accepted for publication in Icaru

    Electronic Interface Reconstruction at Polar-Nonpolar Mott Insulator Heterojunctions

    Full text link
    We report on a theoretical study of the electronic interface reconstruction (EIR) induced by polarity discontinuity at a heterojunction between a polar and a nonpolar Mott insulators, and of the two-dimensional strongly-correlated electron systems (2DSCESs) which accompany the reconstruction. We derive an expression for the minimum number of polar layers required to drive the EIR, and discuss key parameters of the heterojunction system which control 2DSCES properties. The role of strong correlations in enhancing confinement at the interface is emphasized.Comment: 7 pages, 6 figures, some typos correcte

    Complete Tidal Evolution of Pluto-Charon

    Full text link
    Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto's tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis a4RPa \approx 4R_P (where RPR_P is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function QQ \propto 1/frequency and Q=Q= constant, where details of the evolution are strongly model dependent. The inclusion of the gravitational harmonic coefficient C22C_{22} of both bodies in the analysis allows smooth, self consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution in some cases. The zonal harmonic J2J_2 can also be included, but does not cause a significant effect on the overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolution is realized while conserving total angular momentum - including temporary capture into spin-orbit resonances as Charon's spin decreases and damped librations about the same.Comment: 36 pages, including 18 figures; accepted for publication in Icaru

    Reconfigurable Security: Edge Computing-based Framework for IoT

    Full text link
    In various scenarios, achieving security between IoT devices is challenging since the devices may have different dedicated communication standards, resource constraints as well as various applications. In this article, we first provide requirements and existing solutions for IoT security. We then introduce a new reconfigurable security framework based on edge computing, which utilizes a near-user edge device, i.e., security agent, to simplify key management and offload the computational costs of security algorithms at IoT devices. This framework is designed to overcome the challenges including high computation costs, low flexibility in key management, and low compatibility in deploying new security algorithms in IoT, especially when adopting advanced cryptographic primitives. We also provide the design principles of the reconfigurable security framework, the exemplary security protocols for anonymous authentication and secure data access control, and the performance analysis in terms of feasibility and usability. The reconfigurable security framework paves a new way to strength IoT security by edge computing.Comment: under submission to possible journal publication

    Data for paper Microbial generation of elemental mercury from dissolved methylmercury in seawater

    Get PDF
    Elemental mercury (Hg0) formation from other mercury species in seawater results from photoreduction and microbial activity, leading to possible evasion from seawater to overlying air. Microbial conversion of monomethylmercury (MeHg) to Hg0 in seawater remains unquantified. A rapid radioassay method was developed using gamma-emitting 203Hg as a tracer to evaluate Hg0 production from Hg(II) and MeHg in the low pM range. Bacterioplankton assemblages in Atlantic surface seawater and Long Island Sound water were found to rapidly produce Hg0, with production rate constants being directly related to bacterial biomass and independent of dissolved Hg(II) and MeHg concentrations. About 32% of Hg(II) and 19% of MeHg were converted to Hg0 in 4 d in Atlantic surface seawater containing low-bacterial biomass, and in Long Island Sound water with higher bacterial biomass, 54% of Hg(II) and 8% of MeHg were transformed to Hg0. Decreasing temperatures from 24C to 4C reduced Hg0 production rates cell−1 from Hg(II) 3.3 times as much as from a MeHg source. Because Hg0 production rates were linearly related to microbial biomass and temperature, and microbial mercuric reductase was detected in our field samples, we inferred that microbial metabolic activities and enzymatic reactions primarily govern Hg0 formation in subsurface waters where light penetration is diminished
    corecore