10,937 research outputs found
A Self-Consistent Model for Positronium Formation from Helium Atoms
The differential and total cross sections for electron capture by positrons
from helium atoms are calculated using a first-order distorted wave theory
satisfying the Coulomb boundary conditions. In this formalism a parametric
potential is used to describe the electron screening in a consistent and
realistic manner. The present procedure is self consistent because (i) it
satisfies the correct boundary conditions and post-prior symmetry, and (ii) the
potential and the electron binding energies appearing in the transition
amplitude are consistent with the wave functions describing the collision
system. The results are compared with the other theories and with the available
experimental measurements. At the considered range of collision energies, the
results agree reasonably well with recent experiments and theories.
[Note: This paper will be published on volume 42 of the Brazilian Journal of
Physics
An assessment of pulse transit time for detecting heavy blood loss during surgical operation
Copyright @ Wang et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.The main contribution of this paper is the use of non-invasive measurements such as electrocardiogram (ECG) and photoplethysmographic (PPG) pulse oximetry waveforms to develop a new physiological signal analysis technique for detecting blood loss during surgical operation. Urological surgery cases were considered as the control group due to its generality, and cardiac surgery as experimental group since it involves blood loss and water supply. Results show that the control group has the tendency of a reduction of the pulse transient time (PTT), and this indicates an increment in the blood flow velocity changes from slow to fast. While for the experimental group, the PTT indicates high values during blood loss, and low values during water supply. Statistical analysis shows considerable differences (i.e., P <0.05) between both groups leading to the conclusion that PTT could be a good indicator for monitoring patients' blood loss during a surgical operation.The National Science Council (NSC) of Taiwan and the Centre for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan
Photosynthetic and biochemical characterization of in vitro-derived African violet (Saintpaulia ionantha H. Wendl) plants to ex vitro conditions
Chirped pulse Raman amplification in warm plasma: towards controlling saturation
Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.close0
MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure
Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe
Warped Riemannian metrics for location-scale models
The present paper shows that warped Riemannian metrics, a class of Riemannian
metrics which play a prominent role in Riemannian geometry, are also of
fundamental importance in information geometry. Precisely, the paper features a
new theorem, which states that the Rao-Fisher information metric of any
location-scale model, defined on a Riemannian manifold, is a warped Riemannian
metric, whenever this model is invariant under the action of some Lie group.
This theorem is a valuable tool in finding the expression of the Rao-Fisher
information metric of location-scale models defined on high-dimensional
Riemannian manifolds. Indeed, a warped Riemannian metric is fully determined by
only two functions of a single variable, irrespective of the dimension of the
underlying Riemannian manifold. Starting from this theorem, several original
contributions are made. The expression of the Rao-Fisher information metric of
the Riemannian Gaussian model is provided, for the first time in the
literature. A generalised definition of the Mahalanobis distance is introduced,
which is applicable to any location-scale model defined on a Riemannian
manifold. The solution of the geodesic equation is obtained, for any Rao-Fisher
information metric defined in terms of warped Riemannian metrics. Finally,
using a mixture of analytical and numerical computations, it is shown that the
parameter space of the von Mises-Fisher model of -dimensional directional
data, when equipped with its Rao-Fisher information metric, becomes a Hadamard
manifold, a simply-connected complete Riemannian manifold of negative sectional
curvature, for . Hopefully, in upcoming work, this will be
proved for any value of .Comment: first version, before submissio
A Tale of Two Current Sheets
I outline a new model of particle acceleration in the current sheet
separating the closed from the open field lines in the force-free model of
pulsar magnetospheres, based on reconnection at the light cylinder and
"auroral" acceleration occurring in the return current channel that connects
the light cylinder to the neutron star surface. I discuss recent studies of
Pulsar Wind Nebulae, which find that pair outflow rates in excess of those
predicted by existing theories of pair creation occur, and use those results to
point out that dissipation of the magnetic field in a pulsar's wind upstream of
the termination shock is restored to life as a viable model for the solution of
the "" problem as a consequence of the lower wind 4-velocity implied by
the larger mass loading.Comment: 17 pages, 6 figures, Invited Review, Proceedings of the "ICREA
Workshop on The High-Energy Emission from Pulsars and their Systems", Sant
Cugat, Spain, April 12-16, 201
Brownian bridges to submanifolds
We introduce and study Brownian bridges to submanifolds. Our method involves
proving a general formula for the integral over a submanifold of the minimal
heat kernel on a complete Riemannian manifold. We use the formula to derive
lower bounds, an asymptotic relation and derivative estimates. We also see a
connection to hypersurface local time. This work is motivated by the desire to
extend the analysis of path and loop spaces to measures on paths which
terminate on a submanifold
Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair
- …
